Skip to main content
Log in

Dynamics of breathers and rogue waves for a generalized discrete Hirota equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Under investigation in this paper is a generalized discrete Hirota equation. Based on Lax pair, the Nth-fold Darboux transformation is constructed. The one- and two-breather solutions are obtained and analyzed. The first- and second-order rogue wave solutions are derived and investigated. The influences of parameters for solutions are discussed. In particular, the different structures of second-order rogue wave are observed. Moreover, the interaction solutions between rogue wave and one breather are constructed and studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are including in this published article.

References

  1. M. Yu, J.K. Jang, Y. Okawachi, A.G. Griffith, K. Luke, S.A. Miller, X.C. Ji, M. Lipson, A.L. Gaeta, Breather soliton dynamics in microresonators. Nat. Commun. 8, 14569 (2017)

    Article  ADS  Google Scholar 

  2. F. Leo, L. Gelens, P. Emplit, M. Haelterman, S. Coen, Dynamics of one-dimensional Kerr cavity solitons. Opt. Express 21, 9180 (2013)

    Article  ADS  Google Scholar 

  3. J.S. Peng, S. Boscolo, Z.H. Zhao, H.P. Zeng, Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv. 5, eaax1110 (2019)

    Article  ADS  Google Scholar 

  4. T.H. Xian, L. Xian, W.C. Wang, W.Y. Zhang, Subharmonic entrainment breather solitons in ultrafast lasers. Phys. Rev. Lett. 125, 163901 (2020)

    Article  ADS  Google Scholar 

  5. N. Akhmediev, V.I. Korneev, Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089–1093 (1986)

    Article  MATH  Google Scholar 

  6. K. Hammani, B. Wetzel, B. Kibler, J. Fatome, C. Finot, G. Millot, N. Akhmediev, J.M. Dudley, Spectral dynamics of modulation instability described using Akhmediev breather theory. Opt. Lett. 36, 2140–2142 (2011)

    Article  ADS  Google Scholar 

  7. B. Frisquet, B. Kibler, G. Millot, Collision of Akhmediev breathers in nonlinear fiber optics. Phys. Rev. X 3, 041032 (2013)

    Google Scholar 

  8. N. Akhmediev, A. Ankiewicz, M. Taki, Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    Article  ADS  MATH  Google Scholar 

  9. M. Shats, H. Punzmann, H. Xia, Capillary rogue waves. Phys. Rev. Lett. 104, 104503 (2010)

    Article  ADS  Google Scholar 

  10. A. Chabchoub, N.P. Hoffmann, N. Akhmediev, Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  ADS  Google Scholar 

  11. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  ADS  Google Scholar 

  12. M. Erkintalo, G. Genty, J.M. Dudley, Rogue-wave-like characteristics in femtosecond supercontinuum generation. Opt. Lett. 34, 2468 (2009)

    Article  ADS  Google Scholar 

  13. Y.V. Bludov, V.V. Konotop, Vector rogue waves in binary mixtures of Bose–Einstein condensates. Eur. Phys. J. Spec.l Top. 185, 169–180 (2010)

    Article  Google Scholar 

  14. Z.Y. Yan, V.V. Konotop, N. Akhmediev, Three-dimensional rogue waves in nonstationary parabolic potentials. Phys. Rev. E 82, 036610 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. Z.Y. Yan, Financial rogue waves. Commun. Theor. Phys. 54, 947–949 (2010)

    Article  ADS  MATH  Google Scholar 

  16. Z.Y. Yan, Vector financial rogue waves. Phys. Lett. A 375, 4274–4279 (2011)

    Article  ADS  MATH  Google Scholar 

  17. M. Onorato, A.R. Osborne, M. Serio, Freak waves in random oceanic sea states. Phys. Rev. Lett. 86, 5831–5834 (2001)

    Article  ADS  Google Scholar 

  18. C. Kharif, E. Pelinovsky, Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B-Fluid. 22, 603–634 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. G.Q. Zhang, Z.Y. Yan, X.Y. Wen, Y. Chen, Interactions of localized wave structures and dynamics in the defocusing coupled nonlinear Schrödinger equations. Phys. Rev. E 95, 042201 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. J.G. Rao, J.S. He, D. Mihalache, Y. Cheng, Dynamics and interaction scenarios of localized wave structures in the Kadomtsev–Petviashvili-based system. Phys. Rev. E 94, 166–173 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Y.L. Ma, Interaction and energy transition between the breather and RW for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers. Nonlinear Dyn. 97, 95–105 (2019)

    Article  MATH  Google Scholar 

  22. T. Ji, Y.Y. Zhai, Soliton, breather and RW solutions of the coupled Gerdjikov–Ivanov equation via Darboux transformation. Nonlinear Dyn. 101, 619–631 (2020)

    Article  MATH  Google Scholar 

  23. P. Deift, E. Trubowitz, Inverse scattering on the line. Commun. Pure Appl. Math. 32, 121–251 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. C.H. Gu, H.S. Hu, Z.X. Zhou, Darboux Transformation in Soliton Theory, and its Geometric Applications (Shanghai Science and Technology Publishers, Shanghai, 2005)

    Google Scholar 

  25. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  26. Y.Y. Gu, W.J. Yuan, N. Aminakbari, J.M. Lin, Meromorphic solutions of some algebraic differential equations related Painlevé equation IV and its applications. Math. Method. Appl. Sci. 41, 3832–3840 (2018)

    Article  ADS  MATH  Google Scholar 

  27. Y.Y. Gu, C.F. Wu, X. Yao, W.J. Yuan, Characterizations of all real solutions for the KdV equation and \(W_{{\mathbb{R} }}\). Appl. Math. Lett. 107, 106446 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Y.Y. Gu, N. Aminakbari, Bernoulli \((G^{\prime }/G)\)-expansion method for nonlinear Schrödinger equation with third-order dispersion. Mod. Phys. Lett. B 36, 2250028 (2022)

    Article  ADS  Google Scholar 

  29. Y.Y. Gu, N. Aminakbari, New optical soliton solutions for the variable coefficients nonlinear Schrödinger equation. Opt. Quant. Electron. 54, 255 (2022)

    Article  Google Scholar 

  30. D.J. Kaup, Variational solutions for the discrete nonlinear Schrödinger equation. Math. Comput. Simul. 69, 322–333 (2005)

    Article  MATH  Google Scholar 

  31. M. Wadati, Transformation theories for nonlinear discrete systems. Prog. Theor. Phys. Suppl. 59, 36–63 (1976)

    Article  ADS  Google Scholar 

  32. T. Tsuchida, H. Ujino, M. Wadati, Integrable semi-discretization of the coupled nonlinear Schrödinger equations. J. Phys. A: Math. Gen. 32, 2239 (1999)

    Article  ADS  MATH  Google Scholar 

  33. N. Liu, X.Y. Wen, Y.Q. Liu, Fission and fusion interaction phenomena of the discrete kink multi-soliton solutions for the Chen–Lee–Liu lattice equation. Mod. Phys. Lett. B 32, 1850211 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. K. Porsezian, M. Lakshmanan, Discretised Hirota equation, equivalent spin chain and Backlund transformations. Inverse Probl. 5, L15 (1989)

    Article  ADS  MATH  Google Scholar 

  35. R. Guo, X.J. Zhao, Discrete Hirota equation: discrete Darboux transformation and new discrete soliton solutions. Nonlinear Dyn. 84, 1901–1907 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. X.J. Zhao, R. Guo, H.Q. Hao, \(N\)-fold Darboux transformation and discrete soliton solutions for the discrete Hirota equation. Appl. Math. Lett. 75, 114–120 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Y.J. Zhu, Y.Q. Yang, X. Li, Darboux–Bäcklund transformation, breather and rogue wave solutions for the discrete Hirota equation. Optik 236, 166647 (2021)

    Article  ADS  Google Scholar 

  38. X.Y. Wen, D.S. Wang, Modulational instability and higher order-rogue wave solutions for the generalized discrete Hirota equation. Wave Motion 79, 84–97 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. H.T. Wang, X.Y. Wen, Y.Q. Liu, Novel localized wave interaction phenomena and dynamics in the generalized discrete Hirota equation via the generalized \((2, N-2)\)-fold Darboux transformation. Mod. Phys. Lett. B 33, 1950192 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Pickering, H.Q. Zhao, Z.N. Zhu, On the continuum limit for a semidiscrete Hirota equation. Proc. R. Soc. A 472, 20160628 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. J. Yang, Z.N. Zhu, Higher-order rogue wave solutions to a spatial discrete Hirota equation. Chin. Phys. Lett. 35, 090201 (2018)

    Article  ADS  Google Scholar 

  42. M. Li, M.H. Li, J.S. He, Degenerate solutions for the spatial discrete Hirota equation. Nonlinear Dyn. 102, 1825–1836 (2020)

    Article  Google Scholar 

  43. Y.K. Xu, Y. Zhang, Soliton solutions for a generalized nonlocal discrete Hirota equation. Wave Motion 88, 13–20 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. H.Q. Zhao, Z.N. Zhu, Solitons and dynamic properties of the coupled semidiscrete Hirota equation. AIP Adv. 3, 022111 (2013)

    Article  ADS  Google Scholar 

  45. S.P. Kjeldsen, Dangerous wave groups. Nor. Marit. Res. 2, 4–16 (1984)

    Google Scholar 

  46. O. Tutsoy, Ş Çolak, A. Polat, K. Balikci, A novel parametric model for the prediction and analysis of the COVID-19 casualties. IEEE Access 8, 193898–193906 (2020)

    Article  Google Scholar 

  47. J.M. Dudley, F. Dias, M. Erkintalo, G. Genty, Instabilities, breathers and rogue waves in optics. Nat. Photon. 8, 755–764 (2014)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [Grant Number 11801597].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Feng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SX., Wang, YF. & Zhang, X. Dynamics of breathers and rogue waves for a generalized discrete Hirota equation. Eur. Phys. J. Plus 138, 779 (2023). https://doi.org/10.1140/epjp/s13360-023-04416-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04416-0

Navigation