Skip to main content
Log in

\({\varvec{p}}\)th moment stochastic exponential anti-synchronization of delayed complex-valued neural networks

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the pth moment stochastic exponential anti-synchronization problem for delayed complex-valued neural networks (CVNNs). By combining It\(\hat{\mathrm{o}}\)’s differential formula, Halanay inequality and some inequalities techniques, via the designed delay-dependent controller, two different criteria are presented for guaranteeing pth moment anti-synchronization exponentially of the addressed systems by constructing appropriate Lyapunov functionals. Different from the previous works, the anti-synchronization control problem is addressed for CVNNs with the simultaneous existence of stochastic disturbances and time delays. Similar results can also be obtained for delayed CVNNs without stochastic disturbances or real-valued ones. The in-depth analysis results improve and extend some in the existing literature. In the end, two simulation examples are provided to show the effectiveness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lin, W., Chen, G.R.: Large memory capacity in chaotic artificial neural networks: a view of the antiintegrable limit. IEEE Trans. Neural Netw. 20(8), 1340–1351 (2009)

    Google Scholar 

  2. Wang, L.M., Ge, M.F., Hu, J.H., Zhang, G.D.: Global stability and stabilization for inertial memristive neural networks with unbounded distributed delays. Nonlinear Dyn. 95(2), 943–955 (2019)

    Google Scholar 

  3. Liu, P., Zeng, Z.G., Wang, J.: Global synchronization of coupled fractional-order recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. (2018). https://doi.org/10.1109/TNNLS.2018.2884620

    Article  Google Scholar 

  4. Liu, L., Cao, J.D., Qian, C.: \(p\)th moment exponential input-to-state stability of delayed recurrent neural networks with markovian switching via vector Lyapunov function. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 3152–3163 (2018)

    MathSciNet  Google Scholar 

  5. Chen, J., Park, J.H., Xu, S.Y.: Stability analysis for delayed neural networks with an improved general free-matrix-based integral inequality. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2019.2909350

    Article  Google Scholar 

  6. Xiong, J.J., G Zhang, G.B.: Improved stability criterion for recurrent neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5756–5760 (2018)

    MathSciNet  Google Scholar 

  7. Kanter, I., Kinzel, W., Kanter, E.: Secure exchange of information by synchronization of neural networks. Europhys. Lett. 57(1), 141–147 (2002)

    MATH  Google Scholar 

  8. Parlitz, U., Chua, L.O., Kocarev, L., Halle, K.S., Shang, A.: Transmission of digital signals by chaotic synchronization. Int. J. Bifurcat. Chaos 2(4), 973–977 (1992)

    MATH  Google Scholar 

  9. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Ma, Q., Xu, S.Y., Zou, Y., Shi, G.D.: Synchronization of stochastic chaotic neural networks with reaction-diffusion terms. Nonlinear Dyn. 67, 2183–2196 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Yang, X.S., Feng, Y.M., Yiu, K.F.C., Song, Q., Alsaadi, F.E.: Synchronization of coupled neural networks with infinite-time distributed delays via quantized intermittent pinning control. Nonlinear Dyn. 94, 2289–2303 (2018)

    MATH  Google Scholar 

  12. Taherion, S., Lai, Y.C.: Observability of lag synchronization of coupled chaotic oscillators. Phys. Rev. E 59, 6247–6250 (1999)

    Google Scholar 

  13. Wu, H.Q., Zhang, L.Y., Ding, S.B., Guo, X.Q., Wang, L.L.: Complete periodic synchronization of memristor-based neural networks with time-varying delays. Can. J. Phys. 92(11), 1337–1349 (2014)

    Google Scholar 

  14. Zhang, G.D., Shen, Y., Wang, L.M.: Global anti-synchronization of a class of chaotic memristive neural networks with time-varying delays. Neural Netw. 46, 1–8 (2013)

    MATH  Google Scholar 

  15. Wang, W.P., Li, L.X., Peng, H.P., Wang, W.N., Kurths, J., Xiao, J.H., Yang, Y.X.: Anti-synchronization of coupled memristive neutral-type neural networks with mixed time-varying delays via randomly occurring control. Nonlinear Dyn. 83, 2143–2155 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Xing, W., Shi, P., Agarwal, R.K., Zhao, Y.X.: A survey on global pinning synchronization of complex networks. J. Franklin I(356), 3590–3611 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Wedekind, I., Parlitz, U.: Experimental observation of synchronization and anti-synchronization of chaotic lowfrequency- fluctuations in external cavity semiconductor lasers. Int. J. Bifurcation Chaos 11, 1141–1147 (2001)

    Google Scholar 

  18. Wang, W.P., Li, L.X., Peng, H.P., Kurths, J., Xiao, J.H., Yang, Y.X.: Anti-synchronization control of memristive neural networks with multiple proportional delays. Neural Process. Lett. 43, 269–283 (2016)

    Google Scholar 

  19. Sakthivel, R., Anbuvithya, R., Mathiyalagan, K., Ma, Y.K., Prakash, P.: Reliable anti-synchronization conditions for BAM memristive neural networks with different memductance functions. Appl. Math. Comput. 275, 213–228 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Cao, Y.T., Wen, S.P., Chen, M.Z.Q., Huang, T.W., Zeng, Z.G.: New results on anti-synchronization of switched neural networks with time-varying delays and lag signals. Neural Netw. 81, 52–58 (2016)

    MATH  Google Scholar 

  21. Sáchez, E., Matias, M.A., Muñuzuri, V.: Analysis of synchronization of chaotic systems by noise: an experimental study. Phys. Rev. E 56, 4068–4071 (1997)

    Google Scholar 

  22. Wang, F., Chen, Y.L., Liu, M.C.: pth Moment exponential stability of stochastic memristor-based bidirectional associative memory (BAM) neural networks with time delays. Neural Netw. 98, 192–202 (2018)

    Google Scholar 

  23. Chen, G.L., Li, D.S., Shi, L., Van Gaans, O., Verduyn Lunel, S.: Stability results for stochastic delayed recurrent neural networks with discrete and distributed delays. J. Differ. Equ. 264, 3864–3898 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Zhang, W.L., Yang, S.J., Li, C.D., Zhang, W., Yang, X.S.: Stochastic exponential synchronization of memristive neural networks with time-varying delays via quantized control. Neural Netw. 104, 93–103 (2018)

    Google Scholar 

  25. Xing, W., Shi, P., Song, H.Y., Zhao, Y.X., Li, L.Y.: Global pinning synchronization of stochastic delayed complex networks. Inf. Sci. 490, 113–125 (2019)

    MathSciNet  Google Scholar 

  26. Ren, F.L., Cao, J.D.: Anti-synchronization of stochastic perturbed delayed chaotic neural networks. Neural Comput. Appl. 18, 515–521 (2009)

    Google Scholar 

  27. Wang, W.P., Li, L.X., Peng, H.P., Kurths, J., Xiao, J.H., Yang, Y.X.: Finite-time anti-synchronization control of memristive neural networks with stochastic perturbations. Neural Process. Lett. 43, 49–63 (2016)

    Google Scholar 

  28. Zheng, C.D., Liang, W.L., Wang, Z.S.: Anti-synchronization of markovian jumping stochastic chaotic neural networks with mixed time delays. Circ. Syst. Signal Process. 33, 2761–2792 (2014)

    MathSciNet  Google Scholar 

  29. Hirose, A., Yoshida, S.: Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence. IEEE Trans. Neural Netw. 23, 541–551 (2012)

    Google Scholar 

  30. Hirose, A.: Recent progress in applications of complex-valued neural networks. In: Proceedings of the 10th International Conference on Artificial Intelligence and Soft Computing: part II, pp. 42–46 (2010)

  31. Nitta, T.: Solving the XOR problem and the detection of symmetry using a single complex-valued neuron. Neural Netw. 16(8), 1101–1105 (2003)

    MathSciNet  Google Scholar 

  32. Zhang, Z.Y., Guo, R.N., Liu, X.P., Lin, C.: Lagrange exponential stability of complex-valued BAM neural networks with time-varying delays. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2840091

    Article  Google Scholar 

  33. Wang, H.M., Duan, S.K., Huang, T.W., Wang, L.D., Li, C.D.: Exponential stability of complex-valued memristive recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 766–771 (2017)

    Google Scholar 

  34. Guo, R.N., Zhang, Z.Y., Liu, X.P., Lin, C.: Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays. Appl. Math. Comput. 311, 100–117 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Zhang, Z.Y., Lin, C., Chen, B.: Global stability criterion for delayed complex-valued recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25(9), 1704–1708 (2014)

    Google Scholar 

  36. Xu, D.S., Tan, M.C.: Delay-independent stability criteria for complex-valued BAM neutral-type neural networks with time delays. Nonlinear Dyn. 89, 819–832 (2017)

    MATH  Google Scholar 

  37. Liu, Y.F., Tan, M.C., Xu, D.S.: Coexistence and local \(\mu \)-stability of multiple equilibrium points for complex-valued Cohen–Grossberg neural networks with unbounded time-varying delays. Nonlinear Dyn. 91, 2369–2388 (2018)

    MATH  Google Scholar 

  38. Guo, R.N., Zhang, Z.Y., Liu, X.P., Lin, C., Wang, H.X., Chen, J.: Exponential input-to-state stability for complex-valued memristor-based BAM neural networks with multiple time-varying delays. Neurocomputing 275, 2041–2054 (2018)

    Google Scholar 

  39. Wan, P., Jian, J.G., Mei, J.: Periodically intermittent control strategies for \(\alpha \)-exponential stabilization of fractional-order complex-valued delayed neural networks. Nonlinear Dyn. 92, 247–265 (2018)

    MATH  Google Scholar 

  40. Li, X.D., Rakkiyappan, R., Velmurugan, G.: Dissipativity analysis of memristor-based complex-valued neural networks with time-varying delays. Inf. Sci. 294, 645–665 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, Z.Y., Liu, X.P., Zhou, D.H., Lin, C., Chen, J., Wang, H.X.: Finite-time stabilizability and instabilizability for complex-valued memristive neural networks with time delays. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2371–2382 (2018)

    Google Scholar 

  42. Bao, H.B., Park, J.H., Cao, J.D.: Synchronization of fractional-order complex-valued neural networks with time delay. Neural Netw. 81, 16–28 (2016)

    MATH  Google Scholar 

  43. Hu, J., Zeng, C.N.: Adaptive exponential synchronization of complex-valued Cohen–Grossberg neural networks with known and unknown parameters. Neural Netw. 86, 90–101 (2017)

    MATH  Google Scholar 

  44. Chen, J.J., Chen, B.S., Zeng, Z.G.: Global asymptotic stability and adaptive ultimate Mittag–Leffler synchronization for a fractional-order complex-valued memristive neural networks with delays. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2836952

    Article  Google Scholar 

  45. Zhang, Z.Y., Liu, X.P., Lin, C., Chen, B.: Finite-time synchronization for complex-valued recurrent neural networks with time delays. Complexity Article ID 8456737 (2018)

  46. Liu, D., Zhu, S., Sun, K.L.: Global anti-synchronization of complex-valued memristive neural networks with time delays. IEEE Trans. Cybern. 49(5), 1735–1747 (2019)

    Google Scholar 

  47. Liu, D., Zhu, S., Sun, K.L.: Anti-synchronization of complex-valued memristor-based delayed neural networks. Neural Netw. 105, 1–13 (2018)

    Google Scholar 

  48. Liu, D., Zhu, S., Chang, W.T.: Mean square exponential input-to-state stability of stochastic memristive complex-valued neural networks with time varying delay. Int. J. Syst. Sci. 487, 1966–1977 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Guo, J., Meng, Z.D., Xiang, Z.R.: Passivity analysis of stochastic memristor-based complex-valued recurrent neural networks with mixed time-varying delays. Neural Process. Lett. 47(3), 1097–1113 (2018)

    Google Scholar 

  50. Liu, D., Zhu, S., Chang, W.T.: Global exponential stability of stochastic memristor-based complex-valued neural networks with time delays. Nonlinear Dyn. 90, 915–934 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Sriraman, R., Cao, Y., Samidurai, R.: Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays. Math. Comput. Simulat. (2019). https://doi.org/10.1016/j.matcom.2019.04.001

    Article  MATH  Google Scholar 

  52. Gong, W.Q., Liang, J.L., Kan, X., Wang, L., Dobaie, A.M.: Robust state estimation for stochastic complex-valued neural networks with sampled-data. Neural Comput. Appl. 31, 523–542 (2019)

    Google Scholar 

  53. Zhang, L., Yang, X.S., Xu, C., Feng, J.W.: Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control. Appl. Math. Comput. 306, 22–30 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC 61673215, 61374087, the 333 Project (BRA2017380), a Project Funded by the Priority Academic Program Development of Jiangsu, the Key Laboratory of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runan Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I

By combining Assumptions 1 and 2 with Lemma 1, it follows that

$$\begin{aligned}&\mathcal {L}V(t,\varpi (t)) \nonumber \\&~ \le e^{\epsilon t} \sum _{j=1}^{n}\Big [\epsilon \alpha _j-p\alpha _jd_j-p\alpha _j\xi _{1j} +\delta _je^{\epsilon \tau }\Big ]|u_j(t)|^p \nonumber \\&~ +e^{\epsilon t} \sum _{j=1}^{n}\Big [\epsilon \beta _j -p\beta _jd_j-p\beta _j\xi _{2j}+\gamma _je^{\epsilon \tau }\Big ]|v_j(t)|^p \nonumber \\&~-e^{\epsilon t}\sum _{j=1}^{n}\delta _j|u_j^{\tau }(t)|^p-e^{\epsilon t}\sum _{j=1}^{n}\gamma _j|v_j^{\tau }(t)|^p \nonumber \\&~+pe^{\epsilon t}\sum _{j=1}^{n}\alpha _j\sum _{k=1}^{n}\Big [|a_{jk}^R|(\mu _k^{RR}|u_k(t)|+\mu _k^{RI}|v_k(t)|) \nonumber \\&~+|a_{jk}^I|(\mu _k^{IR}|u_k(t)|+\mu _k^{II}|v_k(t)|)\Big ]|u_j(t)|^{p-1} \nonumber \\&~+pe^{\epsilon t}\sum _{j=1}^{n}\alpha _j\sum _{k=1}^{n}\Big [|b_{jk}^R|(\nu _k^{RR}|u_k^{\tau }(t)|+\nu _k^{RI}|v_k^{\tau }(t)|) \nonumber \\&~+|b_{jk}^I|(\nu _k^{IR}|u_k^{\tau }(t)|+\nu _k^{II}|v_k^{\tau }(t)|)\Big ]|u_j(t)|^{p-1} \nonumber \\&~+pe^{\epsilon t}\sum _{j=1}^{n} \sum _{k=1}^{n}\alpha _j\pi _{1j}|u_j(t)|^{p-1}|u_k^{\tau }(t)| \nonumber \\&~+pe^{\epsilon t}\sum _{j=1}^{n} \sum _{k=1}^{n}\beta _j\pi _{2j}|v_j(t)|^{p-1}|v_k^{\tau }(t)| \nonumber \\&~+pe^{\epsilon t}\sum _{j=1}^{n}\beta _j\sum _{k=1}^{n}[|a_{jk}^R|(\mu _k^{IR}|u_k(t)|+\mu _k^{II}|v_k(t)|) \nonumber \\&~+|a_{jk}^I|(\mu _k^{RR}|u_k(t)|+\mu _k^{RI}|v_k(t)|)]|v_j(t)|^{p-1} \nonumber \\&~+pe^{\epsilon t}\sum _{j=1}^{n}\beta _j\sum _{k=1}^{n}[|b_{jk}^R|(\nu _k^{IR}|u_k^{\tau }(t)|+\nu _k^{II}|v_k^{\tau }(t)|) \nonumber \\&~+|b_{jk}^I|(\nu _k^{RR}|u_k^{\tau }(t)|+\nu _k^{RI}|v_k^{\tau }(t)|)]|v_j(t)|^{p-1} \nonumber \\&~+\frac{1}{2}p(p-1)e^{\epsilon t} \sum _{j=1}^{n}\alpha _j|u_j(t)|^{p-2} \nonumber \\&~\times \sum _{k=1}^{n}\Big [\varphi _{1jk}|u_k(t)|^{2} +\psi _{1jk}|u_k^{\tau }(t)|^{2}\Big ] \nonumber \\&~+\frac{1}{2}p(p-1)e^{\epsilon t} \sum _{j=1}^{n}\beta _j|v_j(t)|^{p-2} \nonumber \\&~\times \sum _{k=1}^{n}\Big [\varphi _{2jk}|v_k(t)|^{2}+\psi _{2jk}|v_k^{\tau }(t)|^{2}\Big ] \nonumber \\&~\le e^{\epsilon t} \sum _{j=1}^{n}\Big [\epsilon \alpha _j-p\alpha _jd_j-p\alpha _j\xi _{1j}+\delta _je^{\epsilon \tau }\Big ]|u_j(t)|^p \nonumber \\&~ +e^{\epsilon t} \sum _{j=1}^{n}\Big [\epsilon \beta _j-p\beta _jd_j -p\beta _j\xi _{2j}+\gamma _je^{\epsilon \tau }\Big ]|v_j(t)|^p \nonumber \\&~-e^{\epsilon t}\sum _{j=1}^{n}\delta _j|u_j^{\tau }(t)|^p-e^{\epsilon t}\sum _{j=1}^{n}\gamma _j|v_j^{\tau }(t)|^p \nonumber \\&~ +e^{\epsilon t}\sum _{j=1}^{n}\sum _{k=1}^{n}\alpha _j \chi _1[(p-1)| u_j(t)|^{p}+|u_k(t)|^p] \nonumber \\&~+e^{\epsilon t}\sum _{j=1}^{n}\sum _{k=1}^{n}\alpha _j \chi _2[(p-1)| u_j(t)|^{p}+|v_k(t)|^p] \nonumber \\&~+e^{\epsilon t}\sum _{j=1}^{n}\sum _{k=1}^{n}\alpha _j (\chi _3+\pi _{1j})[(p-1)| u_j(t)|^{p}+|u_k^{\tau }(t)|^p] \nonumber \\&~+e^{\epsilon t}\sum _{j=1}^{n}\sum _{k=1}^{n}\alpha _j \chi _4[(p-1)| u_j(t)|^{p}+|v_k^{\tau }(t)|^p] \nonumber \\&~+e^{\epsilon t}\sum _{j=1}^{n}\sum _{k=1}^{n}\beta _j \zeta _1[(p-1)| v_j(t)|^{p}+|u_k(t)|^p] \nonumber \\&~+e^{\epsilon t}\sum _{j=1}^{n}\sum _{k=1}^{n}\beta _j \zeta _2[(p-1)| v_j(t)|^{p}+|v_k(t)|^p] \nonumber \\&~+e^{\epsilon t}\sum _{j=1}^{n}\sum _{k=1}^{n}\beta _j \zeta _3[(p-1)| v_j(t)|^{p}+|u_k^{\tau }(t)|^p] \nonumber \\&~+e^{\epsilon t}\sum _{j=1}^{n}\sum _{k=1}^{n}\beta _j (\zeta _4+\pi _{2j})[(p-1)| v_j(t)|^{p}+|v_k^{\tau }(t)|^p] \nonumber \\&~+\frac{1}{2}(p-1)e^{\epsilon t} \sum _{j=1}^{n}\sum _{k=1}^{n}\alpha _j\Big [\varphi _{1jk}[(p-2)|u_j(t)|^{p} \nonumber \\&~+2|u_k(t)|^{p}] +\psi _{1jk}[(p-2)|u_j(t)|^{p}+2|u_k^\tau (t)|^{p}]\Big ] \nonumber \\&~+\frac{1}{2}(p-1)e^{\epsilon t} \sum _{j=1}^{n}\sum _{k=1}^{n}\beta _j\Big [\varphi _{2jk}[(p-2)|v_j(t)|^{p} \nonumber \\&~+2|u_k(t)|^{p}] +\psi _{2jk}[(p-2)|v_j(t)|^{p}+2|v_k^\tau (t)|^{p}]\Big ],\nonumber \\ \end{aligned}$$
(32)

where

$$\begin{aligned}&\chi _1=|a_{jk}^R|\mu _{k}^{RR}+|a_{jk}^I|\mu _{k}^{IR},~ \chi _2=|a_{jk}^R|\mu _{k}^{RI}+|a_{jk}^I|\mu _{k}^{II}, \\&\chi _3=|b_{jk}^R|\nu _{k}^{RR}+|b_{jk}^I|\nu _{k}^{IR},~ \chi _4=|b_{jk}^R|\nu _{k}^{RI}+|b_{jk}^I|\nu _{k}^{II}, \\&\zeta _1=|a_{jk}^R|\mu _{k}^{IR}+|a_{jk}^I|\mu _{k}^{RR},~ \zeta _2=|a_{jk}^R|\mu _{k}^{II}+|a_{jk}^I|\mu _{k}^{RI}, \\&\zeta _3=|b_{jk}^R|\nu _{k}^{IR}+|b_{jk}^I|\nu _{k}^{RR},~ \zeta _4=|b_{jk}^R|\nu _{k}^{II}+|b_{jk}^I|\nu _{k}^{RI}. \end{aligned}$$

Further, one can derive

$$\begin{aligned}&\mathcal {L}V(t)\le e^{\epsilon t}\sum _{j=1}^{n}\Big [\epsilon \alpha _j-p\alpha _jd_j-p\alpha _j\xi _{1j}+\delta _je^{\epsilon \tau } \nonumber \\&~+(p-1)\sum _{k=1}^{n}\alpha _j(\chi _1+\chi _2+\chi _3+\pi _{1j}+\chi _4) \nonumber \\&~+\sum _{k=1}^{n}(\alpha _k\tilde{\chi }_1+\beta _k\tilde{\zeta }_1) +\frac{1}{2}(p-1)(p-2)\alpha _j \nonumber \\&~\times \sum _{k=1}^{n}(\varphi _{1jk}+\psi _{1jk}) +(p-1)\sum _{k=1}^{n}\alpha _k\varphi _{1kj}\Big ]|u_j(t)|^p \nonumber \\&~+e^{\epsilon t}\sum _{j=1}^{n}\Big [\epsilon \beta _j-p\beta _jd_j-p\beta _j\xi _{2j}+\gamma _je^{\epsilon \tau } \nonumber \\&~+(p-1)\sum _{k=1}^{n}\beta _j(\zeta _1+\zeta _2+\zeta _3+\zeta _4+\pi _{2j}) \nonumber \\&~+\sum _{k=1}^{n}(\alpha _k\tilde{\chi }_2+\beta _k\tilde{\zeta }_2) +\frac{1}{2}(p-1)(p-2)\beta _j \nonumber \\&~\times \sum _{k=1}^{n}(\varphi _{2jk}+\psi _{2jk}) +(p-1)\sum _{k=1}^{n}\beta _k\varphi _{2kj}\Big ]|v_j(t)|^p \nonumber \\&~+e^{\epsilon t}\sum _{j=1}^{n}\Big [-\delta _j+\sum _{k=1}^{n}(\alpha _k(\tilde{\chi }_3+\pi _{1k})+\beta _k\tilde{\zeta }_3) \nonumber \\&~+(p-1)\sum _{k=1}^{n}\alpha _k\psi _{1kj}\Big ]|u_j^{\tau }(t)|^p \nonumber \\&~+e^{\epsilon t}\sum _{j=1}^{n}\Big [-\gamma _j +\sum _{k=1}^{n}(\alpha _k\tilde{\chi }_4 +\beta _k(\tilde{\zeta }_4+\pi _{2k})) \nonumber \\&~+(p-1)\sum _{k=1}^{n}\beta _k\psi _{2kj}\Big ]|v_j^{\tau }(t)|^p, \end{aligned}$$
(33)

where

$$\begin{aligned}&\tilde{\chi }_1=|a_{kj}^R|\mu _{j}^{RR}+|a_{kj}^I|\mu _{j}^{IR},~\\&\tilde{\chi }_2=|a_{kj}^R|\mu _{j}^{RI}+|a_{kj}^I|\mu _{j}^{II}, \\&\tilde{\chi }_3=|b_{kj}^R|\nu _{j}^{RR}+|b_{kj}^I|\nu _{j}^{IR},~ \tilde{\chi }_4=|b_{kj}^R|\nu _{j}^{RI}+|b_{kj}^I|\nu _{j}^{II}, \\&\tilde{\zeta }_1=|a_{kj}^R|\mu _{j}^{IR}+|a_{kj}^I|\mu _{j}^{RR},~ \tilde{\zeta }_2=|a_{kj}^R|\mu _{j}^{II}+|a_{kj}^I|\mu _{j}^{RI}, \\&\tilde{\zeta }_3=|b_{kj}^R|\nu _{j}^{IR}+|b_{kj}^I|\nu _{j}^{RR},~ \tilde{\zeta }_4=|b_{kj}^R|\nu _{j}^{II}+|b_{kj}^I|\nu _{j}^{RI}. \end{aligned}$$

Here, define

$$\begin{aligned}&\delta _j=\sum \limits _{k=1}^{n}(\alpha _k(\tilde{\chi }_3+\pi _{1k})+\beta _k\tilde{\zeta }_3) +(p-1)\sum \limits _{k=1}^{n}\alpha _k\psi _{1kj}, \nonumber \\&\gamma _j=\sum \limits _{k=1}^{n}(\alpha _k\tilde{\chi }_4+\beta _k(\tilde{\zeta }_4+\pi _{2k})) +(p-1)\sum \limits _{k=1}^{n}\beta _k\psi _{2kj}. \nonumber \\&\end{aligned}$$
(34)

By (12), there must exist a sufficiently small number \(\epsilon >0\) such that

$$\begin{aligned}&\epsilon -p(d_j+\xi _{1j})+(p-1)\sum _{k=1}^{n}(\chi _1+\chi _2+\chi _3 \nonumber \\&~+\pi _{1j}+\chi _4) +\frac{\delta _je^{\epsilon \tau }}{\alpha _j} +\sum _{k=1}^{n}(\frac{\alpha _k}{\alpha _j}\tilde{\chi }_1+\frac{\beta _k}{\alpha _j}\tilde{\zeta }_1) \nonumber \\&~+\frac{1}{2}(p-1)(p-2)\sum _{k=1}^{n}(\varphi _{1jk}+\psi _{1jk}) \nonumber \\&~+(p-1)\sum _{k=1}^{n}\frac{\alpha _k}{\alpha _j}\varphi _{1kj}<0, \nonumber \\&\epsilon -p(d_j+\xi _{2j}) +(p-1)\sum _{k=1}^{n}(\zeta _1+\zeta _2+\zeta _3 \nonumber \\&~+\zeta _4+\pi _{2j})+\frac{\gamma _je^{\epsilon \tau }}{\beta _j} +\sum _{k=1}^{n}(\frac{\alpha _k}{\beta _j}\tilde{\chi }_2+\frac{\beta _k}{\beta _j}\tilde{\zeta }_2) \nonumber \\&~+\frac{1}{2}(p-1)(p-2)\sum _{k=1}^{n}(\varphi _{2jk}+\psi _{2jk}) \nonumber \\&~+(p-1)\sum _{k=1}^{n}\frac{\beta _k}{\beta _j}\varphi _{2kj}<0. \end{aligned}$$
(35)

Then, according to (33)–(35), it is easy to obtain

$$\begin{aligned}&\mathcal {L}V(t,\varpi (t))\le 0. \end{aligned}$$
(36)

Appendix II

From (10) and Lemma 1, (24) can be bounded as

$$\begin{aligned}&\mathcal {L}V_1(t) \le \sum _{j=1}^{n}\Big \{-\tilde{\alpha }_j(d_j+\xi _{1j})|u_j(t)|^p \nonumber \\&+\,\sum _{k=1}^{n}\frac{1}{p}\tilde{\alpha }_j \big [|a^R_{jk}|\big (|\mathbb {F}_k^R(u_k(t),v_k(t))|^p \nonumber \\&+\,(p-1)|u_j(t)|^{p}\big ) \nonumber \\&+\,|a^I_{jk}|\big (|\mathbb {F}_k^I(u_k(t),v_k(t))|^p+(p-1)|u_j(t)|^{p}\big )\big ] \nonumber \\&+\,\sum _{k=1}^{n}\frac{1}{p}\tilde{\alpha }_j \big [|b^R_{jk}|\big (|\mathbb {G}_k^R(u_k(t),v_k(t))|^p \nonumber \\&+\,(p-1)|u_j(t)|^{p}\big ) \nonumber \\&+\,|b^I_{jk}|\big (|\mathbb {G}_k^I(u_k(t),v_k(t))|^p +(p-1)|u_j(t)|^{p}\big )\big ] \nonumber \\&+\,\sum _{k=1}^{n}\frac{1}{p}\pi _{1j}\tilde{\alpha }_j\big (|u_k^{\tau }(t)|^p \nonumber \\&+\,(p-1)|u_j(t)|^{p}\big )\Big \} \nonumber \\&+\,\sum _{j=1}^{n}\Big \{-\tilde{\beta }_j(d_j+\xi _{2j})|v_j(t)|^p \nonumber \\&+\,\sum _{k=1}^{n}\frac{1}{p}\tilde{\beta }_j\big [|a^R_{jk}|\big (|\mathbb {F}_k^I(u_k(t),v_k(t))|^p \nonumber \\&+\,(p-1)|v_j(t)|^{p}\big ) \nonumber \\&+\,|a^I_{jk}|\big (|\mathbb {F}_k^R(u_k(t),v_k(t))|^p+(p-1)|v_j(t)|^{p}\big )\big ] \nonumber \\&+\,\sum _{k=1}^{n}\frac{1}{p}\tilde{\alpha }_j\big [|b^R_{jk}|\big (|\mathbb {G}_k^I(u_k(t),v_k(t))|^p \nonumber \\&+\,(p-1)|u_j(t)|^{p}\big ) \nonumber \\&+\,|b^I_{jk}|\big (|\mathbb {G}_k^R(u_k(t),v_k(t))|^p +\,(p-1)|v_j(t)|^{p}\big )\big ] \nonumber \\&+\,\sum _{k=1}^{n}\frac{1}{p}\pi _{2j}\tilde{\beta }_j\big (|v_k^{\tau }(t)|^P+(p-1)|v_j(t)|^{p}\big )\Big \} \nonumber \\&+\,\frac{1}{2p}(p-1)\sum _{j=1}^{n}\sum _{k=1}^{n}\tilde{\alpha }_j \big [\varphi _{1jk}\big (2|u_k|^p\nonumber \\&+\,(p-2)|u_j(t)|^{p}\big ) \nonumber \\&+\,\psi _{1jk}\big (2|u_k^{\tau }|^p+(p-2)|u_j(t)|^{p}\big )\big ] \nonumber \\&+\,\frac{1}{2p}(p-1)\sum _{j=1}^{n}\sum _{k=1}^{n}\tilde{\beta }_j\big [\varphi _{2jk}\big (2|v_k|^p \nonumber \\&+\,(p-2)|v_j(t)|^{p}\big )+\psi _{2jk}\big (2|v_k^{\tau }|^p\nonumber \\&+\,(p-2)|v_j(t)|^{p}\big )\big ] \nonumber \\\le & {} \sum _{j=1}^{n}\Big \{\big [-\tilde{\alpha }_j(d_j+\xi _{1j}) \nonumber \\&+\,\frac{1}{2p}(p-1)(p-2) \sum _{k=1}^{n}\tilde{\alpha }_j(\varphi _{1jk}+\psi _{1jk}) \nonumber \\&+\,\frac{1}{p}(p-1)\sum _{k=1}^{n}\tilde{\alpha }_k\varphi _{1kj}\big ]|u_j(t)|^p \nonumber \\&+\,\frac{1}{p}2^{p-1}\sum _{k=1}^{n}(\tilde{\alpha }_j|a_{jk}^R|+\tilde{\beta }_j|a_{jk}^I)\big [(\mu _k^{RR})^p|u_k(t)|^p \nonumber \\&+\,(\mu _k^{RI})^p|v_k(t)|^p\big ] +\frac{1}{p}2^{p-1}\sum _{k=1}^{n}(\tilde{\alpha }_j|a_{jk}^I| \nonumber \\&+\,\tilde{\beta }_j|a_{jk}^R)\big [(\mu _k^{IR})^p|u_k(t)|^p+(\mu _k^{II})^p|v_k(t)|^p\big ] \nonumber \\&+\,\frac{1}{p}2^{p-1}\sum _{k=1}^{n}(\tilde{\alpha }_j|b_{jk}^R| +\tilde{\beta }_j|b_{jk}^I) [(\nu _k^{RR})^p|u_k^{\tau }(t)|^p \nonumber \\&+\,(\nu _k^{RI})^p|v_k^{\tau }(t)|^p] +\frac{1}{p}2^{p-1}\sum _{k=1}^{n}(\tilde{\alpha }_j|b_{jk}^I| \nonumber \\&+\,\tilde{\beta }_j|b_{jk}^R)[(\nu _k^{IR})^p|u_k^{\tau }(t)|^p+(\nu _k^{II})^p|v_k^{\tau }(t)|^p]\Big \} \nonumber \\&+\,\sum _{j=1}^{n}\Big \{\big [-\tilde{\beta }_j(d_j+\xi _{2j}) \nonumber \\&+\,\frac{1}{2p}(p-1)(p-2)\sum _{k=1}^{n}\tilde{\beta }_j(\varphi _{2jk}+\psi _{2jk}) \nonumber \\&+\,\frac{p-1}{p}\sum _{k=1}^{n}\tilde{\beta }_k\varphi _{2kj}\big ]|v_j(t)|^p +\frac{p-1}{p}\sum _{k=1}^{n}\big [\tilde{\alpha }_j(\chi _5 \nonumber \\&+\,\pi _{1j})|u_j(t)|^p+\tilde{\beta }_j(\chi _5+\pi _{2j})|v_j(t)|^p\big ] \nonumber \\&+\,sum_{k=1}^{n}\frac{1}{p}(\pi _{1j}\tilde{\alpha }_j+(p-1)\tilde{\alpha }_j\psi _{1jk})|u_k^{\tau }(t)|^p \nonumber \\&+\,\sum _{k=1}^{n}\frac{1}{p}(\pi _{2j}\tilde{\beta }_j+(p-1)\tilde{\beta }_j\psi _{2jk})|v_k^{\tau }(t)|^p\Big \} . \end{aligned}$$
(37)

Consequently, we deduce

$$\begin{aligned}&\mathcal {L}V_1(t) \le \sum _{j=1}^{n}\Big [-\tilde{\alpha }_j(d_j+\xi _{1j}) \nonumber \\&\quad +\frac{1}{2p}(p-1)(p-2)\sum _{k=1}^{n}\tilde{\alpha }_j(\varphi _{1jk}+\psi _{1jk}) \nonumber \\&\quad +\frac{1}{p}(p-1)\sum _{k=1}^{n}\tilde{\alpha }_k\varphi _{1kj} +\sum _{k=1}^{n}\frac{1}{p}(\tilde{\alpha }_k\hat{\chi }_1+\tilde{\beta }_k\hat{\zeta }_1) \nonumber \\&\quad +\sum _{k=1}^{n}\frac{p-1}{p}\tilde{\alpha }_j(\chi _5+\pi _{1j})\Big ]|u_j(t)|^p \nonumber \\&\quad +\sum _{j=1}^{n}\Big [-\tilde{\beta }_j(d_j+\xi _{2j}) \nonumber \\&\quad +\frac{1}{2p}(p-1)(p-2)\sum _{k=1}^{n}\tilde{\beta }_j(\varphi _{2jk}+\psi _{2jk}) \nonumber \\&\quad +\frac{1}{p}(p-1)\sum _{k=1}^{n}\tilde{\beta }_k\varphi _{2kj} +\sum _{k=1}^{n}\frac{1}{p}(\tilde{\alpha }_k\hat{\chi }_2+\tilde{\beta }_k\hat{\zeta }_2) \nonumber \\&\quad +\sum _{k=1}^{n}\frac{p-1}{p}\tilde{\beta }_j(\chi _5+\pi _{2j})\Big ]|v_j(t)|^p \nonumber \\&\quad +\sum _{j=1}^{n}\Big [\sum _{k=1}^{n}\frac{1}{p}(\tilde{\alpha }_k\hat{\chi }_3+\tilde{\beta }_k\hat{\zeta }_3) \nonumber \\&\quad +\sum _{k=1}^{n}\frac{1}{p}\tilde{\alpha }_k(\pi _{1k}+(p-1)\psi _{1kj})\Big ]|u_j^{\tau }(t)|^p \nonumber \\&\quad +\sum _{j=1}^{n}\Big [\sum _{k=1}^{n}\frac{1}{p}(\tilde{\alpha }_k\hat{\chi }_4+\tilde{\beta }_k\hat{\zeta }_4) \nonumber \\&\quad +\sum _{k=1}^{n}\frac{1}{p}\tilde{\beta }_k(\pi _{2k}+(p-1)\psi _{2kj})\Big ]|v_j^{\tau }(t)|^p \nonumber \\&=-\varOmega _1\sum _{j=1}^{n}\frac{1}{p}\tilde{\alpha }_j|u_j(t)|^p -\varOmega _2\sum _{j=1}^{n}\frac{1}{p}\tilde{\beta }_j|v_j(t)|^p \nonumber \\&\quad +\varOmega _3\sum _{j=1}^{n}\frac{1}{p}\tilde{\alpha }_j|u_j^{\tau }(t)|^p +\varOmega _4\sum _{j=1}^{n}\frac{1}{p}\tilde{\beta }_j|v_j^{\tau }(t)|^p \nonumber \\&\le -\varOmega V_1(t)+\varOmega ^{\prime }\sup _{t-\tau \le s\le t}V_1(s), \end{aligned}$$
(38)

where

$$\begin{aligned}&\varOmega _1=p(d_j+\xi _{1j}) -\frac{1}{2}(p-1)(p-2)\sum _{k=1}^{n}(\varphi _{1jk}+\psi _{1jk}) \\&\quad -(p-1)\sum _{k=1}^{n}\frac{\tilde{\alpha }_k}{\tilde{\alpha }_j}\varphi _{1kj} -\sum _{k=1}^{n}\frac{2^{p-1}}{\tilde{\alpha }_j}(\tilde{\alpha }_k\hat{\chi }_1+\tilde{\beta }_k\hat{\zeta }_1) \\&\quad -\sum _{k=1}^{n}(p-1)(\chi _5+\pi _{1j}), \\&\varOmega _2=p(d_j+\xi _{2j}) -\frac{1}{2}(p-1)(p-2)\sum _{k=1}^{n}(\varphi _{2jk}+\psi _{2jk}) \\&\quad -(p-1)\sum _{k=1}^{n}\frac{\tilde{\beta }_k}{\tilde{\beta }_j}\varphi _{2kj} -\sum _{k=1}^{n}\frac{2^{p-1}}{\tilde{\beta }_j}(\tilde{\alpha }_k\hat{\chi }_2+\tilde{\beta }_k\hat{\zeta }_2) \\&\quad -\sum _{k=1}^{n}(p-1)(\chi _5+\pi _{2j}), \\&\varOmega _3=\sum _{k=1}^{n}\frac{2^{p-1}}{\tilde{\alpha }_j}(\tilde{\alpha }_k\hat{\chi }_3+\tilde{\beta }_k\hat{\zeta }_3) +\sum _{k=1}^{n}\frac{\tilde{\alpha }_k}{\tilde{\alpha }_j}(\pi _{1k} \\&\quad +(p-1)\psi _{1kj}), \\&\varOmega _4=\sum _{k=1}^{n}\frac{2^{p-1}}{\tilde{\beta }_j}(\tilde{\alpha }_k\hat{\chi }_4+\tilde{\beta }_k\hat{\zeta }_4) +\sum _{k=1}^{n}\frac{\tilde{\beta }_k}{\tilde{\beta }_j}(\pi _{2k} \\&\quad +(p-1)\psi _{2kj}), \\&\hat{\chi }_1=|a_{kj}^R|(\mu _{j}^{RR})^p+|a_{kj}^I|(\mu _{j}^{IR})^p,~ \hat{\chi }_2=|a_{kj}^R|(\mu _{j}^{RI})^p \\&\quad +|a_{kj}^I|(\mu _{j}^{II})^p,~ \hat{\chi }_3=|b_{kj}^R|(\nu _{j}^{RR})^p+|b_{kj}^I|(\nu _{j}^{IR}+\pi _{1j})^p, \\&\hat{\chi }_4=|b_{kj}^R|(\nu _{j}^{RI})^p+|b_{kj}^I|(\nu _{j}^{II})^p,~ \hat{\zeta }_1=|a_{kj}^R|(\mu _{j}^{IR})^p \\&\quad +|a_{kj}^I|(\mu _{j}^{RR})^p,~ \hat{\zeta }_2=|a_{kj}^R|(\mu _{j}^{II})^p+|a_{kj}^I|(\mu _{j}^{RI})^p, \\&\hat{\zeta }_3=|b_{kj}^R|(\nu _{j}^{IR})^p+|b_{kj}^I|(\nu _{j}^{RR})^p,~ \hat{\zeta }_4=|b_{kj}^R|(\nu _{j}^{II})^p \\&\quad +|b_{kj}^I|(\nu _{j}^{RI}+\pi _{2j})^p,~ \chi _5=|a_{jk}^R|+|a_{jk}^I|+|b_{jk}^R|+|b_{jk}^I|. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Xu, S. & Lv, W. \({\varvec{p}}\)th moment stochastic exponential anti-synchronization of delayed complex-valued neural networks. Nonlinear Dyn 100, 1257–1274 (2020). https://doi.org/10.1007/s11071-020-05583-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05583-w

Keywords

Navigation