Skip to main content
Log in

An effective projection-based nonlinear adaptive control strategy for heavy vehicle suspension with hysteretic leaf spring

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new nonlinear adaptive control strategy for electrohydraulic active suspensions with the hysteretic leaf spring is proposed to improve suspension performances of heavy vehicle. The nonlinear hysteresis property of leaf spring, described and experimentally validated with the Bouc–Wen model, is transformed into linear system by Takagi–Sugeno (T–S) fuzzy approach. Based on the derived T–S fuzzy model, a robust \({H}\infty \) dynamic feedback control with adaptive gain is employed to generate the desired target forces for hydraulic actuators. A new projection-based adaptive control (PAC) law is further proposed for actuators to track the target forces under parametric uncertainties. The PAC law is derived based on the global asymptotic stability conditions of Lyapunov function for the obtained T–S fuzzy model with parametric uncertainties under inputs from both outputs of robust \({H}\infty \) controller and errors of force tracking. The benefits of vehicle systems with PAC active suspension are compared to both sliding mode control (SMC) active suspension and passive suspension. The obtained results indicate that the PAC method can be able to cope with uncertainties and has better robustness than SMC method. Furthermore, the obtained results also indicate that the proposed nonlinear adaptive control strategy effectively improves the suspension performances of heavy vehicle with the hysteretic leaf spring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Cao, D., Rakheja, S., Su, C.: Heavy vehicle pitch dynamics and suspension tuning. Part I: unconnected suspension. Veh. Syst. Dyn. 46(10), 931–953 (2008)

    Article  Google Scholar 

  2. Ding, F., Han, X., Luo, Z., Zhang, N.: Modelling and characteristic analysis of tri-axle trucks with hydraulically interconnected suspensions. Veh. Syst. Dyn. 50(12), 1877–1904 (2012)

    Article  Google Scholar 

  3. Zhang, J., Zou, G., Zhang, N., Zheng, M., Zhang, B., Zhang, L.: Dynamic analysis of a vehicle with leaf spring based on the hysteresis model. Int. J. Veh. Perform. 4(3), 282–304 (2018)

    Article  Google Scholar 

  4. Ahmadian, M.: Magneto-rheological suspensions for improving ground vehicle’s ride comfort, stability, and handling. Veh. Syst. Dyn. 55(10), 1618–1642 (2017)

    Article  Google Scholar 

  5. Wang, R., Jing, H., Karimi, H.R., Chen, N.: Robust fault-tolerant \(\text{ H }\infty \) control of active suspension systems with finite-frequency constraint. Mech. Syst. Sig. Process. 62–63, 341–355 (2015)

    Article  Google Scholar 

  6. Li, P., Lam, J., Cheung, K.C.: Motion-based active disturbance rejection control for a non-linear full-car suspension system. Proc. Inst. Mech. Eng. D J. Automob. Eng. 232(5), 616–631 (2017)

    Article  Google Scholar 

  7. Du, H., Zhang, N.: Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint. IEEE Trans. Fuzzy Syst. 17(2), 343–356 (2009)

    Article  Google Scholar 

  8. Rebai, A., Guesmi, K., Hemici, B.: Adaptive fuzzy synergetic control for nonlinear hysteretic systems. Nonlinear Dyn. 86(3), 1445–1454 (2016)

    Article  MATH  Google Scholar 

  9. Pi, D., Wang, X., Wang, H., Kong, Z.: Development of hierarchical control logic for two-channel hydraulic active roll control system. J. Dyn. Sys., Meas., Control 140(10), 101009 (2018)

    Article  Google Scholar 

  10. Choi, H.D., Ahn, C.K., Lim, M.T., Song, M.K.: Dynamic output-feedback H \(\infty \) control for active half-vehicle suspension systems with time-varying input delay. Int. J. Control Autom. Syst. 14(1), 59–68 (2016)

    Article  Google Scholar 

  11. Sun, X., Yuan, C., Cai, Y., Wang, S., Chen, L.: Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model. Mech. Syst. Sig. Process. 94, 94–110 (2017)

    Article  Google Scholar 

  12. Bououden, S., Chadli, M., Karimi, H.R.: A robust predictive control design for nonlinear active suspension systems. Asian J. Control 18(1), 122–132 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, Y., Na, J., Wu, X., Liu, X., Guo, Y.: Adaptive control of nonlinear uncertain active suspension systems with prescribed performance. ISA Trans. 54(1), 145–155 (2015)

    Article  Google Scholar 

  14. Dehghani, R., Khanlo, H.M., Fakhraei, J.: Active chaos control of a heavy articulated vehicle equipped with magnetorheological dampers. Nonlinear Dyn. 87(3), 1923–1942 (2017)

    Article  Google Scholar 

  15. Li, H., Yu, J., Hilton, C., Liu, H.: Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T–S fuzzy approach. IEEE Trans. Ind. Electron. 60(8), 3328–3338 (2013)

    Article  Google Scholar 

  16. Jin, Y., Luo, X.: Stochastic optimal active control of a half-car nonlinear suspension under random road excitation. Nonlinear Dyn. 72(1–2), 185–195 (2013)

    Article  MathSciNet  Google Scholar 

  17. Sun, W., Pan, H., Gao, H.: Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators. IEEE Trans. Veh. Technol. 65(6), 4619–4626 (2016)

    Article  Google Scholar 

  18. Göhrle, C., Schindler, A., Wagner, A., Sawodny, O.: Road profile estimation and preview control for low-bandwidth active suspension systems. IEEE/ASME Trans. Mechatron. 20(5), 2299–2310 (2015)

    Article  Google Scholar 

  19. Kumar, P.S., Sivakumar, K., Kanagarajan, R., Kuberan, S.: Adaptive neuro fuzzy inference system control of active suspension system with actuator dynamics. J. Vibroeng. 20(1), 541–549 (2018)

    Article  Google Scholar 

  20. Wang, G., Chen, C., Yu, S.: Robust non-fragile finite-frequency \(\text{ H }\infty \) static output-feedback control for active suspension systems. Mech. Syst. Sig. Process. 91, 41–56 (2017)

    Article  Google Scholar 

  21. Guan, Y., Han, Q., Yao, H., Ge, X.: Robust event-triggered \(\text{ H }\infty \) controller design for vehicle active suspension systems. Nonlinear Dyn. 94(1), 627–638 (2018)

    Article  MATH  Google Scholar 

  22. Ma, M., Chen, H.: Disturbance attenuation control of active suspension with non-linear actuator dynamics. IET Control Theory Appl. 5(1), 112–122 (2011)

    Article  MathSciNet  Google Scholar 

  23. Yao, J., Jiao, Z., Ma, D.: A practical nonlinear adaptive control of hydraulic servomechanisms with periodic-like disturbances. IEEE/ASME Trans. Mechatron. 20(6), 633–641 (2015)

    Google Scholar 

  24. Yao, B., Bu, F., Reedy, J., Chiu, G.T.C.: Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments. IEEE/ASME Trans. Mechatron. 5(1), 79–91 (2000)

    Article  Google Scholar 

  25. Sun, W., Gao, H., Yao, B.: Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators. IEEE Trans. Control Syst. Technol. 21(6), 2417–2422 (2013)

    Article  Google Scholar 

  26. Wang, D., Zhao, D., Gong, M., Yang, B.: Research on robust model predictive control for electro-hydraulic servo active suspension systems. IEEE Access 6, 3231–3240 (2018)

    Article  Google Scholar 

  27. Chantranuwathana, S., Peng, H.: Adaptive robust force control for vehicle active suspensions. Int. J. Adapt. Control Signal Process. 18(2), 83–102 (2004)

    Article  Google Scholar 

  28. Lin, J., Lian, R.J., Huang, C.N., Sie, W.T.: Enhanced fuzzy sliding mode controller for active suspension systems. Mechatronics 19(7), 1178–1190 (2009)

    Article  Google Scholar 

  29. Shaer, B., Kenné, J.P., Kaddissi, C., Fallaha, C.: A chattering-free fuzzy hybrid sliding mode control of an electrohydraulic active suspension. Trans. Inst. Meas. Control 40(1), 222–238 (2018)

    Article  Google Scholar 

  30. Kilicaslan, S.: Control of active suspension system considering nonlinear actuator dynamics. Nonlinear Dyn. 91(2), 1383–1394 (2018)

    Article  Google Scholar 

  31. Ma, X., Wong, P.K., Zhao, J.: Practical multi-objective control for automotive semi-active suspension system with nonlinear hydraulic adjustable damper. Mech. Syst. Sig. Process. 117, 667–688 (2019)

    Article  Google Scholar 

  32. Yao, J., Jiao, Z., Ma, D., Yan, L.: High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties. IEEE/ASME Trans. Mechatron. 19(2), 633–641 (2014)

    Article  Google Scholar 

  33. Ikhouane, F., Rodellar, J.: On the hysteretic Bouc–Wen model. Nonlinear Dyn. 42(1), 63–78 (2005)

    Article  MATH  Google Scholar 

  34. Li, L., Sandu, C.: Stochastic vehicle handling prediction using a polynomial chaos approach. Int. J. Veh. Des. 63(4), 327–363 (2013)

    Article  Google Scholar 

  35. Guo, L., Zhang, L.: Robust \(\text{ H }\infty \) control of active vehicle suspension under non-stationary running. J. Sound Vib. 331(26), 5824–5837 (2012)

    Article  Google Scholar 

  36. Luzi, A.R., Peaucelle, D., Biannic, J., Pittet, C., Mignot, J.: Structured adaptive attitude control of a satellite. Int. J. Adapt. Control Signal Process. 28(7–8), 664–685 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Peaucelle, D., Leduc, H.: Adaptive control design with s-variable LMI approach for robustness and \(\text{ L }_{2}\) performance. Int. J. Control (2018). https://doi.org/10.1080/00207179.2018.1554907

    Article  MATH  Google Scholar 

  38. Cole, D.: Fundamental issues in suspension design for heavy road vehicles. Veh. Syst. Dyn. 35(4–5), 319–360 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the National Natural Science Foundation of China (Grant No. 51805155, Grant No. 51675152), Foundation for Innovative Research Groups of National Natural Science Foundation of China (Grant No. 51621004), Open Fund in the State Key Laboratory of Advanced Design and Manufacture for Vehicle Body (Grant No. 71575005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Ding.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in relation to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 1

[20]. For any vectors \({\mathbf{x}},{\mathbf{y}}\in R^{n}\), and two matrices \({\mathbf{U}}\) and \({\mathbf{S}}\) with appropriate dimensions, if the appropriate dimension \({\varvec{\Delta }}\) satisfies \({\varvec{\Delta }}^{{\mathbf{T}}}{\varvec{\Delta }}\le {\mathbf{I}}\), then for any scalar \(\sigma _{0} >0\), we have

$$\begin{aligned} 2{\mathbf{x}}^{\mathrm{T}}{\mathbf{U}{\varvec{\Delta }} \mathbf{Sy}}\le \sigma _{0}^{-1} {\mathbf{x}}^{\mathrm{T}}{\mathbf{UU}}^{\mathrm{T}}{\mathbf{x}}+\sigma _{0} {\mathbf{y}}^{\mathrm{T}}{\mathbf{S}}^{\mathrm{T}}{\mathbf{Sy}} \end{aligned}$$
(47)

Proof of part A: Considering the tracking error \({\mathbf{e}}\) on the closed-loop system (15), the candidate Lyapunov function is defined as,

$$\begin{aligned} V_{2} (t)= & {} \overbrace{{\varvec{\upxi }}_{1}^{\mathrm{T}} {\tilde{\mathbf{R}}{\varvec{\upxi }}}_{1} +Tr[({\mathbf{K}}_{h} -{\mathbf{K}}_{o} )^{\mathrm{T}}{\varvec{\Theta }}({\mathbf{K}}_{h} -{\mathbf{K}}_{o} )]}^{V_{1} (t)}\nonumber \\&+1/2{\mathbf{e}}^{\mathrm{T}}{\mathbf{e}} \end{aligned}$$
(48)

where \({\varvec{\upxi }}_{1} =[{\mathbf{x}}^{\mathrm{T}}\quad {\mathbf{y}}^{\mathrm{T}}\quad ({\mathbf{K}}_{h} -{\mathbf{K}}_{o} )^{\mathrm{T}}]^{\mathrm{T}}\), \({\tilde{{\mathbf{R}}}}=\mathrm{diag}[{\mathbf{R}}\quad {\mathbf{0}}]\).

Computing the time derivative of \(V_{1} (t)\) yields

$$\begin{aligned} {\dot{V}}_{2} (t)= & {} {\varvec{\upxi }}_{1}^{\mathrm{T}} \left[ {\begin{array}{cc} \mathrm{sys}({\mathbf{PA}}+{\mathbf{PB}}_{2} {\mathbf{K}}_{o} {\mathbf{C}})&{}*\\ {\mathbf{B}}_{2}^{{\mathbf{T}}} {\mathbf{P}}-{\varvec{\Theta } \mathbf{NH}}\hbox {C}&{}-\mathrm{sys}({\varvec{\Theta } \mathbf{M}}) \\ \end{array}} \right] {\varvec{\upxi }}_{1} \nonumber \\&+2{\varvec{\upxi }}_{1}^{\mathrm{T}} {\tilde{{\mathbf{R}}}\tilde{\mathbf{w}}}+2{\mathbf{e}}^{{\mathbf{T}}}{{\mathbf{B}}}_{2}^{\mathrm{T}} {\mathbf{Rx}}+{\mathbf{e}}^{{\mathbf{T}}}{\dot{\mathbf{e}}} \end{aligned}$$
(49)

in which \({\tilde{{\mathbf{w}}}}=\left[ {{\bar{{\mathbf{w}}}}^{\mathrm{T}}\quad {\bar{{\mathbf{w}}}}^{\mathrm{T}}} \right] ^{\mathrm{T}}\). Substituting the adaptive control laws (37) and (38) into \(2{\mathbf{e}}^{{\mathbf{T}}}{{\mathbf{B}}}_{2}^{\mathrm{T}} {\mathbf{Rx}}+{\mathbf{e}}^{{\mathbf{T}}}{\dot{\mathbf{e}}}\), the following transformation can be obtained

$$\begin{aligned} 2{\mathbf{e}}^{{\mathbf{T}}}{{\mathbf{B}}}_{2}^{\mathrm{T}} {\mathbf{Rx}}+{\mathbf{e}}^{{\mathbf{T}}}{\dot{\mathbf{e}}}\le -\kappa _{\mathrm{1}} {\mathbf{e}}^{\mathrm{T}}{\mathbf{e}}+\kappa _{\mathrm{2}} \end{aligned}$$
(50)

Then, substituting Eqs. (50) into (49), we have

$$\begin{aligned}&{\dot{V}}_{2} (t)\le {\varvec{\upxi }}_{1}^{\mathrm{T}} \left[ \begin{array}{cc} \mathrm{sys}({\mathbf{PA}}+{\mathbf{PB}}_{2} {\mathbf{K}}_{o} {\mathbf{C}})&{}*\\ {\mathbf{B}}_{2}^{{\mathbf{T}}} {\mathbf{P}}-{\varvec{\Theta } \mathbf{NH}}\hbox {C}&{}-\mathrm{sys}({\varvec{\Theta } \mathbf{M}}) \\ \end{array} \right] {\varvec{\upxi }}_{1} \nonumber \\&\quad +2{\varvec{\upxi }}_{1}^{\mathrm{T}} {\tilde{\mathbf{R}}\tilde{\mathbf{w}}}-\kappa _{\mathrm{1}} {\mathbf{e}}^{\mathrm{T}}{\mathbf{e}}+\kappa _{\mathrm{2}} \end{aligned}$$
(51)

Based on the inequality (19) and by using the Schur lemma, the following inequation holds

$$\begin{aligned}&\left[ {\begin{array}{cc} \mathrm{sys}({\mathbf{PA}}+{\mathbf{PB}}_{2} {\mathbf{K}}_{o} {\mathbf{C}})&{}*\\ {\mathbf{B}}_{2}^{{\mathbf{T}}} {\mathbf{P}}-{\varvec{\Theta } \mathbf{NH}}\hbox {C}&{}-\mathrm{sys}({\varvec{\Theta } \mathbf{M}}) \\ \end{array}} \right] +\gamma ^{-2}{\tilde{{\mathbf{R}}}\tilde{\mathbf{R}}} \nonumber \\&\quad +\left[ {\begin{array}{c} ({\mathbf{C}}_{1}^{\mathrm{T}} +{\mathbf{C}}^{\mathrm{T}}{\mathbf{K}}_{o}^{\mathrm{T}} {\mathbf{D}}_{12}^{\mathrm{T}} ) \\ {\mathbf{D}}_{12}^{\mathrm{T}} \\ \end{array}} \right] \left[ {\begin{array}{c} ({\mathbf{C}}_{1}^{\mathrm{T}} +{\mathbf{C}}^{\mathrm{T}}{\mathbf{K}}_{o}^{\mathrm{T}} {\mathbf{D}}_{12}^{\mathrm{T}} ) \\ {\mathbf{D}}_{12}^{\mathrm{T}} \\ \end{array}} \right] ^{\mathrm{T}}<0\nonumber \\ \end{aligned}$$
(52)

According to Lemma 1, we have \(2{\varvec{\upxi }}_{1}^{\mathrm{T}} {{\tilde{\mathbf{R}}}{\tilde{\mathbf{w}}}}\le \varepsilon ^{-1}{\varvec{\upxi }}_{1}^{\mathrm{T}} {\tilde{\mathbf{R}}{\tilde{\mathbf{R}}}\upxi }_{1} +\varepsilon {\tilde{{\mathbf{w}}}}^{\mathrm{T}}{\tilde{{\mathbf{w}}}}\) in which \(\varepsilon \) is a positive number. Thus, the following transformation can be expressed as

$$\begin{aligned} {\dot{V}}_{2} (t)< & {} -(\gamma ^{-2}-\varepsilon ^{-1}){\varvec{\upxi }}_{1}^{\mathrm{T}} {\tilde{\mathbf{R}}\tilde{\mathbf{R}}\upxi }_{1} \nonumber \\&+\varepsilon {\tilde{{\mathbf{w}}}}^{\mathrm{T}}{\tilde{{\mathbf{w}}}}-\kappa _{\mathrm{1}} {\mathbf{e}}^{\mathrm{T}}{\mathbf{e}}+\kappa _{\mathrm{2}} \end{aligned}$$
(53)

The positive number \(\varepsilon \) is chosen to satisfy \(\gamma ^{-2}-\varepsilon ^{-1}>0\) and define \(\varepsilon _{0} =\min \left\{ {\lambda _{\min } ({\tilde{{\mathbf{R}}}})(\gamma ^{-2}-\varepsilon ^{-1}),2\kappa _{1} } \right\} \) in which \(\lambda _{\min } ({\tilde{{\mathbf{R}}}})\) is the minimal nonzero eigenvalue of matrix \({\tilde{{\mathbf{R}}}}\). Then, we can obtain

$$\begin{aligned} {\dot{V}}_{2} (t)<-\varepsilon _{0} V_{2} (t)+\varepsilon _{1} \end{aligned}$$
(54)

where \(\varepsilon _{1} =2\varepsilon ^{-1}\max \left\| {{\bar{{\mathbf{w}}}}} \right\| _{2} +\kappa _{\mathrm{2}} +\varepsilon _{0} \max (Tr[({\mathbf{K}}_{h} -{\mathbf{K}}_{o} )^{\mathrm{T}}\mathrm{\varvec{\Theta }}({\mathbf{K}}_{h} -{\mathbf{K}}_{o} )])\), with \({\tilde{{\mathbf{w}}}}^{\mathrm{T}}{\tilde{{\mathbf{w}}}}\le 2\max \left\| {{\bar{{\mathbf{w}}}}} \right\| _{2} \) and \(Tr[({\mathbf{K}}_{h} -{\mathbf{K}}_{o} )^{\mathrm{T}}\mathrm{\varvec{\Theta }}({\mathbf{K}}_{h} -{\mathbf{K}}_{o} )]\le \max (Tr[({\mathbf{K}}_{h} -{\mathbf{K}}_{o} )^{\mathrm{T}}\mathrm{\varvec{\Theta }}({\mathbf{K}}_{h} -{\mathbf{K}}_{o} )])\). Thus, we can note that the Lyapunov function \(V_{2} (t)\) is bounded by

$$\begin{aligned} V_{2} (t)<V_{2} (0)e^{-\varepsilon _{0} t}-\frac{\varepsilon _{1} }{\varepsilon _{0} }(1-e^{-\varepsilon _{0} t}) \end{aligned}$$
(55)

which demonstrates that all the signals \({\mathbf{x}}(t)\) and \({\mathbf{e}}(t)\) of the closed-loop system (2) are bounded.

Proof of part B: For the stability instruction in the presence of parameter uncertainties, we consider the augmented Lyapunov function as \(V(t)=V_{2} (t)+1/2{\tilde{{\varvec{\uptheta }} }}^{\mathrm{T}}{\varvec{\Gamma }}^{-1}{\tilde{{{\varvec{\uptheta }} }}}\), and the time derivative of V(t) is written as

$$\begin{aligned} {\dot{V}}(t)= & {} {\varvec{\upxi }}_{1}^{\mathrm{T}} \left[ {\begin{array}{cc} \mathrm{sys}({\mathbf{PA}}+{\mathbf{PB}}_{2} {\mathbf{K}}_{o} {\mathbf{C}})&{}*\\ {\mathbf{B}}_{2}^{{\mathbf{T}}} {\mathbf{P}}-{\varvec{\Theta } \mathbf{NH}}\hbox {C}&{}-\mathrm{sys}({\varvec{\Theta } \mathbf{M}}) \\ \end{array}} \right] {\varvec{\upxi }}_{1} \nonumber \\&+2{\mathbf{e}}^{{\mathbf{T}}}{{\mathbf{B}}}_{2}^{\mathrm{T}} {\mathbf{Rx}}+{\mathbf{e}}^{\mathrm{T}}{\dot{\mathbf{e}}}+{\tilde{{\varvec{\uptheta }}}}^{\mathrm{T}}{ \varvec{\Gamma }}^{-1}{\dot{\tilde{\varvec{\uptheta }}}} \end{aligned}$$
(56)

Substituting the inequation (52) into Eq. (56), we can obtain

$$\begin{aligned} {\dot{V}}(t)< & {} -\gamma ^{-2}{\varvec{\upxi }}_{1}^{\mathrm{T}} {\tilde{{\mathbf{R}}}\tilde{\mathbf{R}}\upxi }_{1} +{\mathbf{e}}^{{\mathbf{T}}}(2{{\mathbf{B}}}_{2}^{\mathrm{T}} {\mathbf{Rx}}+{\dot{\mathbf{e}}})\nonumber \\&+\,{\tilde{{\varvec{\uptheta }}}}^{\mathrm{T}}{\varvec{\Gamma }}^{-1}{\dot{\tilde{\varvec{\uptheta }}}} \end{aligned}$$
(57)

Combining Eqs. (37) and (38) with the inequation (57) results in

$$\begin{aligned}&{\dot{V}}(t)<-\gamma ^{-2}{\varvec{\upxi }}_{1}^{\mathrm{T}} {\tilde{{\mathbf{R}}}\tilde{\mathbf{R}}\upxi }_{1} -\kappa _{\mathrm{1}} {\mathbf{e}}^{\mathrm{T}}{\mathbf{e}} \nonumber \\&\quad -\,\overbrace{{\mathbf{e}}^{\mathrm{T}}{\tilde{{\varvec{\Pi }}}}(-{\mathbf{F}}-A_{s}^{\mathrm{2}} {\mathbf{C}}_{\mathrm{3}} ({\mathbf{Ax}}+{\mathbf{B}}_{\mathrm{2}} {\mathbf{F}})+{\varvec{\upsigma }})}^{{\tilde{\varvec{\uptheta }}{} \mathbf{E}{\varvec{\Lambda }} }}\nonumber \\&\quad +\,{\tilde{{\varvec{\uptheta }}}}^{\mathrm{T}}{\varvec{\Gamma }}^{-1}{\dot{\tilde{\varvec{\uptheta }}}} \end{aligned}$$
(58)

Due to the adaptation function \({\varvec{\upchi }}\) satisfying \({\varvec{\upchi }}={\mathbf{E}{\varvec{\Lambda }}}\), we have

$$\begin{aligned} {\mathbf{e}}^{\mathrm{T}}{\tilde{{\varvec{\Pi }}}}(-{\mathbf{F}}-A_{s}^{\mathrm{2}} {\mathbf{C}}_{\mathrm{3}} ({\mathbf{Ax}}+{\mathbf{B}}_{\mathrm{2}} {\mathbf{F}})+{\varvec{\upsigma }})={\tilde{\varvec{\uptheta }}{} \mathbf{E}{\varvec{\Lambda }}} \end{aligned}$$
(59)

Then, substituting Eq. (59) into inequation (58), the transformation of inequation (58) can be obtained

$$\begin{aligned} {\dot{V}}(t)<-\gamma ^{-2}{\varvec{\upxi }}_{1}^{\mathrm{T}} {\tilde{{\mathbf{R}}}\tilde{\mathbf{R}}\upxi }_{1} -\kappa _{\mathrm{1}} {\mathbf{e}}^{\mathrm{T}}{\mathbf{e}}+{\tilde{{\varvec{\uptheta }}}}^{\mathrm{T}}({ \varvec{\Gamma }}^{-1}{\dot{\tilde{\varvec{\uptheta }}}}-{\mathbf{E}\varvec{\Lambda }})\nonumber \\ \end{aligned}$$
(60)

By the property P2 of Eq. (35), the following inequation holds

$$\begin{aligned} {\dot{V}}(t)\le -\gamma ^{-2}{\varvec{\upxi }}_{1}^{\mathrm{T}} {\tilde{\mathbf{R}}\tilde{\mathbf{R }}{\varvec{\upxi }} }_{1} -\kappa _{\mathrm{1}} {\mathbf{e}}^{\mathrm{T}}{\mathbf{e}}<0 \end{aligned}$$
(61)

which demonstrates that all the signals \({\mathbf{x}}(t)\) and \({\mathbf{e}}(t)\) of the closed-loop system (2) can asymptotically converge to zero with a finite time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ding, F., Zhang, B. et al. An effective projection-based nonlinear adaptive control strategy for heavy vehicle suspension with hysteretic leaf spring. Nonlinear Dyn 100, 451–473 (2020). https://doi.org/10.1007/s11071-020-05527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05527-4

Keywords

Navigation