Skip to main content

Advertisement

Log in

Non-fragile robust output feedback control of uncertain active suspension systems with stochastic network-induced delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The vehicle active suspension has attracted considerable attention owing to its great contributions to the vertical dynamics of vehicle. This paper investigates the non-fragile output feedback control problem of the uncertain vehicle active suspension with stochastic network-induced delay. Firstly, taking the variation of sprung and unsprung masses into consideration, an interval type-2 (IT-2) Takagi–Sugeno (T–S) fuzzy model is introduced to describe the nonlinear characteristics of active suspension systems (ASSs). Secondly, to ensure that the control strategy is practicable when some states are unmeasured, a novel output feedback method is proposed by employing a variable substitution approach. Meanwhile, in order to approximate the real physical conditions of the control system, the gain perturbations are taken into account. Thirdly, with regard to the complexity of signal transmission delay in network control process, a more generalized lumped delay form is employed to represent the network-induced delay. Moreover, to describe the stochasticity of lumped delay, a Markovian process is introduced. Finally, both numerical simulations and experimental tests are carried out to examine the effectiveness and practicability of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data for supporting the current study will be made available upon the reasonable request for academic use by contacting the corresponding author.

References

  1. Ding, F., Han, X., Jiang, C., Liu, J., Peng, C.: Fuzzy dynamic output feedback force security control for hysteretic leaf spring hydro-suspension with servo valve opening predictive management under deception attack. IEEE Trans. Fuzzy Syst. 30(9), 3736–3747 (2022)

    Article  Google Scholar 

  2. Zhang, Z.Y., Wang, J.B., Wu, W.G., Huang, C.X.: Semi-active control of air suspension with auxiliary chamber subject to parameter uncertainties and time-delay. Int. J. Robust Nonlinear Control 30(17), 7130–7149 (2020)

    Article  MathSciNet  Google Scholar 

  3. Zhao, J., Wong, P.K., Ma, X.B., Xie, Z.C.: Chassis integrated control for active suspension, active front steering and direct yaw moment systems using hierarchical strategy. Veh. Syst. Dyn. 55(1), 72–103 (2017)

    Article  Google Scholar 

  4. Zhao, J., Wong, P.K., Li, W.F., Ghadikolaeia, M.A., Xie, Z.C.: Reliable fuzzy sampled-data control for nonlinear suspension systems against actuator faults. IEEE ASME Trans. Mechatron. (2022). https://doi.org/10.1109/TMECH.2022.3184617

    Article  Google Scholar 

  5. Du, Z.B., Kao, Y.G., Park, J.H.: Interval type-2 fuzzy sampled-data control of time-delay systems. Inf. Sci. 487, 193–207 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, H., Sun, X., Wu, L., Lam, H.K.: State and output feedback control of interval type-2 fuzzy systems with mismatched membership functions. IEEE Trans. Fuzzy Syst. 23(6), 1943–1957 (2015)

    Article  Google Scholar 

  7. Ren, G.P., Chen, Z., Zhang, H.T., Wu, Y., Meng, H., Wu, D., Ding, H.: Design of interval type-2 fuzzy controllers for active magnetic bearing systems. IEEE ASME Trans. Mechatron. 25(5), 2449–2459 (2020)

    Article  Google Scholar 

  8. Du, H.P., Zhang, N.: Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint. IEEE Trans. Fuzzy Syst. 17(2), 343–356 (2009)

    Article  Google Scholar 

  9. Ma, X.B., Wong, P.K., Zhao, J., Xie, Z.C.: Cornering stability control for vehicles with active front steering system using T–S fuzzy based sliding mode control strategy. Mech. Syst. Signal Process. 125, 347–364 (2019)

    Article  Google Scholar 

  10. Rath, J.J., Defoort, M., Karimi, H.R., Veluvolu, K.C.: Output feedback active suspension control with higher order terminal sliding mode. IEEE Trans. Ind. Electron. 64(2), 1392–1403 (2017)

    Article  Google Scholar 

  11. Song, J., Niu, Y.G., Zou, Y.Y.: A parameter-dependent sliding mode approach for finite-time bounded control of uncertain stochastic systems with randomly varying actuator faults and its application to a parallel active suspension system. IEEE Trans. Ind. Electron. 65(10), 8124–8132 (2018)

    Article  Google Scholar 

  12. Wen, S.P., Chen, M.Z.Q., Zeng, Z.G., Yu, X.H., Huang, T.W.: Fuzzy control for uncertain vehicle active suspension systems via dynamic sliding-mode approach. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 24–32 (2017)

    Article  Google Scholar 

  13. Na, J., Huang, Y.B., Wu, X., Gao, G.B., Herrmann, G., Jiang, J.Z.: Active adaptive estimation and control for vehicle suspensions with prescribed performance. IEEE Trans. Control Syst. Technol. 26(6), 2063–2077 (2018)

    Article  Google Scholar 

  14. Pan, H.H., Jing, X.J., Sun, W.C., Gao, H.J.: A bioinspired dynamics-based adaptive tracking control for nonlinear suspension systems. IEEE Trans. Control Syst. Technol. 26(3), 903–914 (2018)

    Article  Google Scholar 

  15. Zheng, X.Y., Zhang, H., Yan, H.C., Yang, F.W., Wang, Z.P., Vlacic, L.: Active full-vehicle suspension control via cloud-aided adaptive backstepping approach. IEEE Trans. Cybern. 50(7), 3113–3124 (2020)

    Article  Google Scholar 

  16. Hu, M.J., Park, J.H., Cheng, J.: Robust fuzzy delayed sampled-data control for nonlinear active suspension systems with varying vehicle load and frequency-domain constraint. Nonlinear Dyn. 105(3), 2265–2281 (2021)

    Article  Google Scholar 

  17. Zhang, Z., Li, H., Wu, C., Zhou, Q.: Finite frequency fuzzy h control for uncertain active suspension systems with sensor failure. IEEE/CAA J. Autom. Sin. 5(4), 777–786 (2018)

    Article  MathSciNet  Google Scholar 

  18. Hu, C.A., Jing, H., Wang, R.R., Yan, F.J., Chadli, M.: Robust h-infinity output-feedback control for path following of autonomous ground vehicles. Mech. Syst. Signal Process. 70–71, 414–427 (2016)

    Article  Google Scholar 

  19. Liang, D., Huang, J.: Robust output regulation of linear systems by event-triggered dynamic output feedback control. IEEE Trans. Autom. Control 66(5), 2415–2422 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Niu, X.R., Lin, W., Gao, X.W.: Static output feedback control of a chain of integrators with input constraints using multiple saturations and delays. Automatica 125, 8 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shao, X.X., Naghdy, F., Du, H.P., Li, H.Y.: Output feedback h-infinity, control for active suspension of in-wheel motor driven electric vehicle with control faults and input delay. ISA Trans. 92, 94–108 (2019)

    Article  Google Scholar 

  22. Na, J., Huang, Y.B., Wu, X., Liu, Y.J., Li, Y.P., Li, G.: Active suspension control of quarter-car system with experimental validation. IEEE Trans. Syst. Man Cybern.-Syst. 52(8), 4714–4726 (2022)

    Article  Google Scholar 

  23. Han, S.Y., Zhou, J., Chen, Y.H., Zhang, Y.F., Tang, G.Y., Wang, L.: Active fault-tolerant control for discrete vehicle active suspension via reduced-order observer. IEEE Trans. Syst. Man Cybern.-Syst. 51(11), 6701–6711 (2021)

    Article  Google Scholar 

  24. Xiong, J., Chang, X.H., Park, J.H., Li, Z.M.: Nonfragile fault-tolerant control of suspension systems subject to input quantization and actuator fault. Int. J. Robust Nonlinear Control 30(16), 6720–6743 (2020)

    Article  MathSciNet  Google Scholar 

  25. Chang, X.H., Liu, Y.: Quantized output feedback control of AFS for electric vehicles with transmission delay and data dropouts. IEEE Trans. Intell. Transp. Syst. 23(9), 16026–16037 (2022)

    Article  Google Scholar 

  26. Li, W.F., Xie, Z.C., Zhao, J., Wong, P.K., Li, P.S.: Fuzzy finite-frequency output feedback control for nonlinear active suspension systems with time delay and output constraints. Mech. Syst. Signal Process. 132, 315–334 (2019)

    Article  Google Scholar 

  27. Qi, Z., Shi, Q., Zhang, H.: Tuning of digital PID controllers using particle swarm optimization algorithm for a can-based dc motor subject to stochastic delays. IEEE Trans. Ind. Electron. 67(7), 5637–5646 (2020)

    Article  Google Scholar 

  28. Jin, X.J., Yin, G.D., Li, Y.J., Li, J.Q.: Stabilizing vehicle lateral dynamics with considerations of state delay of AFS for electric vehicles via robust gain-scheduling control. Asian J. Control 18(1), 89–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, X.Y., Zhang, H., Wang, J.M., Fang, Z.D.: Robust lateral motion control of electric ground vehicles with random network-induced delays. IEEE Trans. Veh. Technol. 64(11), 4985–4995 (2015)

  30. Huang, H., Ho, D.W.C., Qu, Y.: Robust stability of stochastic delayed additive neural networks with Markovian switching. Neural Netw. 20(7), 799–809 (2007)

  31. Mao, X.R.: Exponential stability of stochastic delay interval systems with Markovian switching. IEEE Trans. Autom. Control 47(10), 1604–1612 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Palhares, R.M., Peres, P.L.D.: Robust filtering with guaranteed energy-to-peak performance—an LMI approach. Automatica 36(6), 851–858 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, M., He, Y., She, J.H., Liu, G.P.: Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 40(8), 1435–1439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, G., Chen, C.Z., Yu, S.B.: Robust non-fragile finite-frequency h-infinity static output-feedback control for active suspension systems. Mech. Syst. Signal Process. 91, 41–56 (2017)

    Article  Google Scholar 

  35. Palacios-Quinonero, F., Rubio-Massegu, J., Rossell, J.M., Karimi, H.R.: Feasibility issues in static output-feedback controller design with application to structural vibration control. J. Frankl. Inst. Eng. Appl. Math. 351(1), 139–155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhao, J., Dong, J.G., Wong, P.K., Ma, X.G., Wang, Y.F., Lv, C.: Interval fuzzy robust non-fragile finite frequency control for active suspension of in-wheel motor driven electric vehicles with time delay. J. Frankl. Inst. Eng. Appl. Math. 359(12), 5960–5990 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, W.F., Xie, Z.C., Wong, P.K., Ma, X.B., Cao, Y.C., Zhao, J.: Nonfragile h-infinity control of delayed active suspension systems in finite frequency under nonstationary running. J. Dyn. Syst. Meas. Control Trans. ASME 141(6), 16 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 52175127), the Natural Science Foundation of Guangdong Province of China (Grant Nos. 2022A1515011495), the China Postdoctoral Science Foundation (Grant No. 2022M712383), the Fundamental Research Funds for the Central Universities (Grant No. N2203012), the research Grant of the University of Macau (Grant No. MYRG2022-00099-FST), the Science and Technology Development Fund, Macau SAR (Grant Nos. 0018/2019 /AKP and SKL-IOTSC(UM)-2021-2023), and the Guangdong Science and Technology Department (Grant Nos. 2018B03 0324002 and 2020B1515130001).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pak Kin Wong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhu, Y., Wong, P.K. et al. Non-fragile robust output feedback control of uncertain active suspension systems with stochastic network-induced delay. Nonlinear Dyn 111, 8275–8291 (2023). https://doi.org/10.1007/s11071-023-08267-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08267-3

Keywords

Navigation