Skip to main content
Log in

Dynamics of various waves in nonlinear Schrödinger equation with stimulated Raman scattering and quintic nonlinearity

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we consider a nonlinear Schrödinger equation with stimulated Raman scattering and quintic nonlinearity, which works as a model for the propagation of ultrashort pulse in optical fiber and also corresponds to one-dimensional anisotropic Heisenberg ferromagnetic spin chain. Introducing a Galilean transformation, we transform the model into a fifth-order complex modified KdV equation, the integrability of which has been considered in the AKNS technique framework. The N-fold Darboux transformation for the model is derived in terms of the gauge transformation of the associated \(3 \times 3\) matrix spectral problem. As applications, abundant intriguing types of nonlinear waves are obtained in zero and nonzero boundary conditions. The dynamical evolution of these nonlinear waves can be well controlled under stimulated Raman scattering and quintic nonlinearity management. Beside that, we also find some novel and interesting conversion phenomena, where a high-order term plays a pivotal role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Kundu, A.: Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25, 3433–3438 (1984)

    Article  MathSciNet  Google Scholar 

  3. Zhang, Y.S., Guo, L.J., Zhou, Z.X., He, J.S.: Darboux transformation of the second-type derivative nonlinear Schrödinger equation. Lett. Math. Phys. 105, 853–891 (2015)

    Article  MathSciNet  Google Scholar 

  4. Wang, X., Yang, B., Chen, Y., Yang, Y.: Higher-order rogue wave solutions of the Kundu–Eckhaus equation. Phys. Scr. 89, 095210 (2014)

    Article  Google Scholar 

  5. Wang, L., Zhu, Y.J., Qi, F.H., Li, M., Guo, R.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells–Fokas equation in inhomogeneous fibers. Chaos 25, 063111 (2015)

    Article  MathSciNet  Google Scholar 

  6. Wang, L., Zhang, J.H., Liu, C., Li, M., Qi, F.H.: Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Phys. Rev. E 93, 062217 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cai, L.Y., Wang, X., Wang, L., Li, M., Liu, Y., Shi, Y.Y.: Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Nonlinear Dyn. 90, 2221–2230 (2017)

    Article  Google Scholar 

  8. Zhao, H.Q., Yuan, J.Y.: A semi-discrete integrable multi-component coherently coupled nonlinear Schrödinger system. J. Phys. A Math. Theor. 49, 275204 (2016)

    Article  Google Scholar 

  9. Zhao, H.Q., Zhu, Z.N.: Solitons and dynamic properties of the coupled semidiscrete Hirota equation. AIP Adv. 3, 022111 (2013)

    Article  Google Scholar 

  10. Zhao, H.Q., Yuan, J.Y., Zhu, Z.N.: Integrable semi-discrete Kundu–Eckhaus equation: Darboux transformation, breather, rogue wave and continuous limit theory. J. Nonlinear Sci. 28, 43–68 (2018)

    Article  MathSciNet  Google Scholar 

  11. Kodama, Y.: Optical solitons in a monomode fiber. J. Stat. Phys. 39, 579–614 (1985)

    Article  MathSciNet  Google Scholar 

  12. Kodama, Y., Hasegawa, A.: Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron. 23, 510–524 (1987)

    Article  Google Scholar 

  13. Sasa, N., Satsuma, J.: New type of soliton solutions for a higher-order nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 60, 409–417 (1991)

    Article  Google Scholar 

  14. Agrawal, G.P.: Nonlinear Fiber Optics, 5th edn. Academic Press, Oxford (2012)

    MATH  Google Scholar 

  15. Stenflo, L., Shukla, P.K.: Nonlinear acoustic–gravity waves. J. Plasma Phys. 75, 841–847 (2009)

    Article  Google Scholar 

  16. Akhmediev, N., Ankiewicz, A.: Solitons: nonlinear pulses and beams. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  17. Ma, L.Y., Zhao, H.Q., Gu, H.: Integrability and gauge equivalence of the reverse space-time nonlocal Sasa–Satsuma equation. Nonlinear Dyn. 91, 1909–1920 (2018)

    Article  Google Scholar 

  18. Zhang, H.Q., Hu, R., Zhang, M.Y.: Darboux transformation and dark soliton solution for the defocusing Sasa–Satsuma equation. Appl. Math. Lett. 69, 101–105 (2017)

    Article  MathSciNet  Google Scholar 

  19. Zuo, D.W., Gao, Y.T., Feng, Y.J., Xue, L.: Rogue-wave interaction for a higher-order nonlinear Schrödinger–Maxwell–Bloch system in the optical-fiber communication. Nonlinear Dyn. 78, 2309–318 (2014)

    Article  Google Scholar 

  20. Zhang, Y., Liu, Y.P., Tang, X.Y.: A general integrable three-component coupled nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 89, 2729–2738 (2017)

    Article  Google Scholar 

  21. Dai, C.Q., Wang, Y., Liu, J.: Spatiotemporal Hermite–Gaussian solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 84, 1157–1161 (2016)

    Article  Google Scholar 

  22. Pickering, A., Zhao, H.Q., Zhu, Z.N.: On the continuum limit for a semidiscrete Hirota equation. Proc. R. Soc. A. 472, 20160628 (2016)

    Article  MathSciNet  Google Scholar 

  23. Zhu, H.P.: Nonlinear tunneling for controllable rogue waves in two dimensional graded-index waveguides. Nonlinear Dyn. 72, 873–882 (2013)

    Article  MathSciNet  Google Scholar 

  24. Lu, X.: Madelung fluid description on a generalized mixed nonlinear Schröinger equation. Nonlinear Dyn. 81, 239–247 (2015)

    Article  Google Scholar 

  25. Song, C.Q., Xiao, D.M., Zhu, Z.N.: Reverse space-time nonlocal Sasa–Satsuma equation and its solutions. J. Phys. Soc. Jpn. 86, 054001 (2017)

    Article  Google Scholar 

  26. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E 90, 032922 (2014)

    Article  Google Scholar 

  27. Wen, X.Y., Yan, Z.: Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation. Chaos 25, 123115 (2015)

    Article  MathSciNet  Google Scholar 

  28. Wang, P.: Conservation laws and solitons for a generalized inhomogeneous fifth-order nonlinear Schrödinger equation from the inhomogeneous Heisenberg ferromagnetic spin system. Eur. Phys. J. D 68, 1–8 (2014)

    Article  Google Scholar 

  29. Sun, W.R., Tian, B., Zhen, H.L., Sun, Y.: Breathers and rogue waves of the fifth-order nonlinear Schrödinger equation in the Heisenberg ferromagnetic spin chain. Nonlinear Dyn. 81, 725–732 (2015)

    Article  Google Scholar 

  30. Yang, B., Chen, Y.: High-order soliton matrices for Sasa–Satsuma equation via local Riemann–Hilbert problem. Nonlinear Anal. R. World Appl. 45, 918–941 (2019)

    Article  MathSciNet  Google Scholar 

  31. Haider, B., Hassan, M., Saleem, U.: Binary Darboux transformation and quasideterminant solutions of the chiral field. J. Nonlinear Math. Phys. 18, 229–321 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Xu, T., Li, M., Li, L.: Anti-dark and Mexican-hat solitons in the Sasa–Satsuma equation on the continuous wave background. Eur. Phys. Lett. 109, 30006 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (Grant No. 11801367), Natural Science Foundation of Shanghai (Grant No. 17ZR1411600) and Humanities and Social Science Research Planning Fund of the Education Ministry of China (Grant No. 15YJCZH201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-qiong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Cq., Zhao, Hq. Dynamics of various waves in nonlinear Schrödinger equation with stimulated Raman scattering and quintic nonlinearity. Nonlinear Dyn 99, 2971–2985 (2020). https://doi.org/10.1007/s11071-020-05478-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05478-w

Keywords

Navigation