Skip to main content
Log in

Bursting oscillations induced by bistable pulse-shaped explosion in a nonlinear oscillator with multiple-frequency slow excitations

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates bursting dynamics of a Rayleigh oscillator with multiple-frequency slow excitations, in which two different bursting patterns related to the bistable pulse-shaped explosion (PSE) are obtained. Typically, the PSE, a novel sharp transition behavior reported recently, can be observed in the Rayleigh oscillator. We show that if there is an initial phase difference \(-\frac{\pi }{2}\) between the slow excitations, two coexisting solution branches exhibiting PSE, which we call bistable PSE, may be created in the fast subsystem. Then, the route to bursting by the bistable PSE is analyzed, and two different bursting patterns, i.e., bursting of point–point type and bursting of cycle–cycle type, are obtained. Our findings show that the initial phase difference of excitations may have great effects on PSE, which thus plays an important role in transitions to different attractors and complex bursting dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Inaba, N., Mori, S.: Folded torus in the forced Rayleigh oscillator with a diode pair. IEEE Trans. Circuits Syst. I Regul. 39, 402–411 (1992)

    Article  Google Scholar 

  2. Bikdash, M., Balachandran, B., Nayfeh, A.: Melnikov analysis for a ship with a general roll-damping model. Nonlinear Dyn. 6, 101–124 (1994)

    Google Scholar 

  3. Szabelski, K., Warminski, J.: Parametric self-excited non-linear system vibrations analysis with inertial excitation. Int. J. Non-Linear Mech. 30, 179–189 (1995)

    Article  Google Scholar 

  4. Wang, G.Q., Cheng, S.S.: A priori bounds for periodic solutions of a delay Rayleigh equation. Appl. Math. Lett. 12, 41–44 (1999)

    Article  MathSciNet  Google Scholar 

  5. Wang, Y., Zhang, L.: Existence of asymptotically stable periodic solutions of a Rayleigh type equation. Nonlinear Anal. Theory Methods Appl. 71, 1728–1735 (2009)

    Article  MathSciNet  Google Scholar 

  6. Chen, H.B., Huang, D.Q., Jian, Y.P.: The saddle case of Rayleigh–Duffing oscillators. Nonlinear Dyn. 93, 2283–2300 (2018)

    Article  Google Scholar 

  7. Felix, J.L.P., Balthazar, J.M., Brasil, R.M.L.R.F.: Comments on nonlinear dynamics of a non-ideal Duffing–Rayleigh oscillator: numerical and analytical approaches. J. Sound Vib. 319, 1136–1149 (2009)

    Article  Google Scholar 

  8. Tabejieu, L.M.A., Nbendjo, B.R.N., Filatrella, G., Woafo, P.: Amplitude stochastic response of Rayleigh beams to randomly moving loads. Nonlinear Dyn. 89, 925–937 (2017)

    Article  Google Scholar 

  9. Kumar, P., Kumar, A., Erlicher, S.: A modified hybrid Van der Pol–Duffing–Rayleigh oscillator for modelling the lateral walking force on a rigid floor. Physica D 358, 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  10. Ghosh, S., Ray, D.S.: Rayleigh-type parametric chemical oscillation. J. Chem. Phys. 143, 124901 (2015)

    Article  Google Scholar 

  11. Bikdash, M., Balachandran, B., Nayfeh, A.H.: Melnikov analysis for a ship with a general roll-damping model. Nonlinear Dyn. 6, 101–124 (1994)

    Google Scholar 

  12. Guin, A., Dandapathak, M., Sarkar, S., Sarkar, B.C.: Birth of oscillation in coupled non-oscillatory Rayleigh–Duffing oscillators. Commun. Nonlinear Sci. Numer. Simul. 42, 420–436 (2017)

    Article  MathSciNet  Google Scholar 

  13. Szabelski, K., Warminski, J.: Parametric self-excited non-linear system vibrations analysis with the inertial excitation. Int. J. Non-Linear Mech. 30, 179–189 (1995)

    Article  Google Scholar 

  14. Szabelski, K., Warminski, J.: The self-excited system vibrations with the parametric and external excitations. J. Sound Vib. 187, 595–607 (1995)

    Article  Google Scholar 

  15. Warminski, J.: Nonlinear normal modes of a self-excited system driven by parametric and external excitations. Nonlinear Dyn. 61, 677–689 (2010)

    Article  MathSciNet  Google Scholar 

  16. Warminski, J., Balthazar, J.M.: Vibrations of a parametrically and self-excited system with ideal and non-ideal energy sources. J. Braz. Soc. Mech. Sci. Eng. 25, 413–420 (2003)

    Article  Google Scholar 

  17. Kingston, S.L., Thamilmaran, K.: Bursting oscillations and mixed-mode oscillations in driven Liénard system. Int. J. Bifurcat. Chaos 27, 1730025 (2017)

    Article  Google Scholar 

  18. Jia, B., Wu, Y.C., He, D., Guo, B.H., Xue, L.: Dynamics of transitions from anti-phase to multiple in-phase synchronizations in inhibitory coupled bursting neurons. Nonlinear Dyn. 93, 1599–1618 (2018)

    Article  Google Scholar 

  19. Zhan, F.B., Liu, S.Q., Wang, J., Lu, B.: Bursting patterns and mixed-mode oscillations in reduced Purkinje model. Int. J. Mod. Phys. B 32, 1850043 (2018)

    Article  MathSciNet  Google Scholar 

  20. Ji, Q.B., Zhou, Y., Yang, Z.Q., Meng, X.Y.: Evaluation of bifurcation phenomena in a modified Shen–Larter model for intracellular \(\text{ Ca }^{2+}\) bursting oscillations. Nonlinear Dyn. 84, 1281–1288 (2016)

    Article  Google Scholar 

  21. Mao, X.C.: Complicated dynamics of a ring of nonidentical FitzHugh–Nagumo neurons with delayed couplings. Nonlinear Dyn. 87, 2395–2406 (2017)

    Article  MathSciNet  Google Scholar 

  22. Beims, M.W., Gallas, J.A.C.: Predictability of the onset of spiking and bursting in complex chemical reactions. Phys. Chem. Chem. Phys. 20, 18539–18546 (2018)

    Article  Google Scholar 

  23. Simo, H., Woafo, P.: Bursting oscillations in electromechanical systems. Mech. Res. Commun. 38, 537–541 (2011)

    Article  Google Scholar 

  24. Simo, H., Woafo, P.: Effects of asymmetric potentials on bursting oscillations in Duffing oscillator. Optik 127, 8760–8766 (2016)

    Article  Google Scholar 

  25. Simo, H., Simo Domguia, U., Kumar Dutt, J., Woafo, P.: Analysis of vibration of pendulum arm under bursting oscillation excitation. Pramana J. Phys. 92, 3 (2019)

    Article  Google Scholar 

  26. Han, X.J., Xia, F.B., Zhang, C., Yu, Y.: Origin of mixed-mode oscillations through speed escape of attractors in a Rayleigh equation with multiple-frequency excitations. Nonlinear Dyn. 88, 2693–2703 (2017)

    Article  Google Scholar 

  27. Han, X.J., Bi, Q.S., Kurths, J.: Route to bursting via pulse-shaped explosion. Phys. Rev. E 98, 010201 (2018)

    Article  Google Scholar 

  28. Wei, M.K., Han, X.J., Zhang, X.F., Bi, Q.S.: Positive and negative pulse-shaped explosion as well as bursting oscillations induced by it. Chin. J. Theor. Appl. Mech. 51, 904–911 (2019)

    Google Scholar 

  29. Duan, L.X., Lu, Q.S., Wang, Q.Y.: Two parameter bifurcation analysis of firing activities in the Chay neuronal model. Neurocomputing 72, 341–351 (2008)

    Article  Google Scholar 

  30. Upadhyay, R.K., Mondal, A., Teka, W.W.: Fractional-order excitable neural system with bidirectional coupling. Nonlinear Dyn. 87, 2219–2233 (2017)

    Article  MathSciNet  Google Scholar 

  31. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurcat. Chaos 10, 1171–1266 (2000)

    Article  MathSciNet  Google Scholar 

  32. Saggio, M.L., Spiegler, A., Bernard, C., Jirsa, V.K.: Fast–slow bursters in the unfolding of a high codimension singularity and the ultra-slow transitions of classes. J. Math. Neurosci. 7, 7 (2017)

    Article  MathSciNet  Google Scholar 

  33. Rinzel, J.: Bursting oscillation in an excitable membrane model. In: Sleeman, B.D., Jarvis, R.J. (eds.) Ordinary and Partial Differential Equations, pp. 304–316. Springer, Berlin (1985)

    Chapter  Google Scholar 

  34. Han, X.J., Bi, Q.S., Ji, P., Kurths, J.: Fast-slow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies. Phys. Rev. E 92, 012911 (2015)

    Article  MathSciNet  Google Scholar 

  35. Han, X.J., Zhang, Y., Bi, Q.S., Kurths, J.: Two novel bursting patterns in the Duffing system with multiple-frequency slow parametric excitations. Chaos 28, 043111 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the anonymous reviewers whose comments and suggestions have helped improve this paper. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11572141, 11632008, 11772161, 11872188 and 11502091), the Qing Lan Project of Jiangsu Province, the Training program for Young Talents of Jiangsu University and the Scientific Research Innovation Project for students of Jiangsu University (Grant No. 18A415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujing Han.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Han, X., Zhang, X. et al. Bursting oscillations induced by bistable pulse-shaped explosion in a nonlinear oscillator with multiple-frequency slow excitations. Nonlinear Dyn 99, 1301–1312 (2020). https://doi.org/10.1007/s11071-019-05355-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05355-1

Keywords

Navigation