Skip to main content
Log in

Complex bursting dynamics in a Rayleigh–Liénard oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the intricate bursting oscillations in a Rayleigh–Liénard oscillator induced by parametric and external slow-varying excitations are proposed. By treating the slow-varying excitations as the generalized state variables, an autonomous system is produced. We identify symmetric bursting oscillations of four distinct types. By simultaneously overlapping the equilibrium branches and the transformed phase portraits and using the fast-slow analysis method, the generation principles of four bursting patterns are disclosed. To explore the parameter qualities associated with the existence of the heteroclinic and homoclinic bifurcations, the Melnikov method is utilized. In addition, we describe the Hopf delay generation mechanism and how the asymptotic theory is used to figure out the delay interval. Furthermore, the precision of the results is demonstrated using the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wang, Y.Y., Rubin, J.E.: Complex bursting dynamics in an embryonic respiratory neuron model. Chaos 30, 043127 (2020). https://doi.org/10.1063/1.5138993

    Article  MathSciNet  Google Scholar 

  2. Olenin, S.M., Levanova, T.A., Stasenko, S.V.: Dynamics in the reduced mean-field model of neuron-glial interaction. Mathematics 11, 2143 (2023). https://doi.org/10.3390/math11092143

    Article  Google Scholar 

  3. Xing, M.M., Yang, Z.Q., Chen, Y.: Bursting types and bifurcation analysis of the temperature-sensitive Purkinje neuron. Nonlinear Dyn. 111(2), 1819–1834 (2023). https://doi.org/10.21203/rs.3.rs-1768401/v1

    Article  Google Scholar 

  4. Lv, C., Tsona, N.T., Du, L.: Sea spray aerosol formation: results on the role of different parameters and organic concentrations from bubble bursting experiments. Chemosphere 252, 126456 (2020). https://doi.org/10.1016/j.chemosphere.2020.126456

    Article  Google Scholar 

  5. Lin, Y., Liu, W.B., Bao, H., et al.: Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect. Chaos, Solitons Fract. 131, 109524 (2020). https://doi.org/10.1016/j.chaos.2019.109524

    Article  MathSciNet  Google Scholar 

  6. Wang, M.J., Li, J.H., Zhang, X.A., et al.: Multi-bifurcation cascaded bursting oscillations and mechanism in a novel 3D non-autonomous circuit system with parametric and external excitation. Nonlinear Dyn. 105, 3699–3714 (2021). https://doi.org/10.1007/s11071-021-06763-y

    Article  Google Scholar 

  7. Xu, H.J., Zhang, Z.D., Peng, M.: Novel bursting patterns and the bifurcation mechanism in a piecewise smooth Chua’s circuit with two scales. Nonlinear Dyn. 108, 1755–1771 (2020). https://doi.org/10.1007/s11071-022-07263-3

    Article  Google Scholar 

  8. Ochiai, H., Hayashi, T., Umeda, M., et al.: Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells. Sci. Adv. 6(25), eaaz6699 (2020). https://doi.org/10.1126/sciadv.aaz6699

    Article  Google Scholar 

  9. Wang, Z., Jamal, S.S., Yang, B.N., et al.: Complex behavior of COVID-19’s mathematical model. Eur. Phys. J. Spec Top. 231(5), 885–891 (2021). https://doi.org/10.1140/epjs/s11734-021-00309-4

    Article  Google Scholar 

  10. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos. 10, 1171–1266 (2020). https://doi.org/10.1142/S0218127400000840

    Article  MathSciNet  Google Scholar 

  11. Rinzel, J.: Bursting oscillations in an excitable membrane model. In: Sleeman, B., Jarvis, R. (eds.) Ordinary and partial differential equations, pp. 304–316. Springer, New York (1985)

    Chapter  Google Scholar 

  12. Pedersen, M.G., Brons, M., Sørensen, M.P.: Amplitude-modulated spiking as a novel route to bursting: coupling-induced mixed-mode oscillations by symmetry breaking. Chaos 32(1), 013121 (2022). https://doi.org/10.1063/5.0072497

    Article  MathSciNet  Google Scholar 

  13. Zhang, S.H., Wang, C., Zhang, H.L., et al.: Dynamic analysis and bursting oscillation control of fractional-order permanent magnet synchronous motor system. Chaos, Solitons Fract. 156, 111809 (2022). https://doi.org/10.1016/j.chaos.2022.111809

    Article  MathSciNet  Google Scholar 

  14. Wei, M.K., Han, X.J., Bi, Q.S.: A new route to pulse-shaped explosion of limit cycles and its induced amplitude-modulated bursting. Commun. Nonlinear Sci. Numer. Simul. 116, 106895 (2023). https://doi.org/10.1016/j.cnsns.2022.106895

    Article  MathSciNet  Google Scholar 

  15. Liu, H., Yang, Z.Q., Yang, B.J.: Investigating the dynamics of bursting by combining two fast-slow analyses with codimension-2 bifurcations in the embryonic pre-BötC neuron model. Nonlinear Dyn. 111, 15417–15444 (2023). https://doi.org/10.1007/s11071-023-08630-4

    Article  Google Scholar 

  16. Qian, Y.H., Wang, H.L., Zhang, D.J.: Bursting dynamics in the general hybrid Rayleigh–van der Pol–duffing oscillator with two external periodic excitations. J. Vib. Eng. Technol. (2023). https://doi.org/10.1007/s42417-023-01023-2

    Article  Google Scholar 

  17. Bashkirtseva, I., Ryashko, L., Slepukhina, E.: Noise-induced spiking-bursting transition in the neuron model with the blue sky catastrophe. Phys. Rev. E 99(6), 062408 (2019). https://doi.org/10.1103/PhysRevE.99.062408

    Article  Google Scholar 

  18. Tzou, J.C., Ward, M.J., Kolokolnikov, T.: Slowly varying control para-meters, delayed bifurcations, and the stability of spikes in reaction-diffusion systems. Phys. D 290, 24–43 (2015). https://doi.org/10.1016/j.physd.2014.09.008

    Article  MathSciNet  Google Scholar 

  19. Ma, X.D., Wang, L.F., Bi, Q.S.: Bursting behaviors induced by the bifurcation delay in a generalized parametrically forced van der Pol–Duffing system. Indian J. Phys. 96, 4269–4282 (2022). https://doi.org/10.1007/s12648-022-02367-3

    Article  Google Scholar 

  20. Hua, H.T., Gu, H.G., Jia, Y.B., Lu, B.: The nonlinear mechanisms underlying the various stochastic dynamics evoked from different bursting patterns in a neuronal model. Commun. Nonlinear Sci. Numer. Simul. 110, 106370 (2022). https://doi.org/10.1016/j.cnsns.2022.106370

    Article  MathSciNet  Google Scholar 

  21. Zhao, H.Q., Ma, X.D., Zhang, B., et al.: Bursting dynamics and the bifurcation mechanism of a modified Rayleigh–van der Pol–Duffing oscillator. Phys. Scr. 97(10), 105208 (2022). https://doi.org/10.1088/1402-4896/ac93c0

    Article  Google Scholar 

  22. Zhao, F., Ma, X.D., Cao, S.Q.: Periodic bursting oscillations in a hybrid Rayleigh–Van der Pol–Duffing oscillator. Nonlinear Dyn. 111, 2263–2279 (2023). https://doi.org/10.1007/s11071-022-07940-3

    Article  Google Scholar 

  23. Zhou, C.Y., Xie, F., Li, Z.J.: Complex bursting patterns and fast-slow analysis in a smallest chemical reaction system with two slow parametric excitations. Chaos, Solitons Fract. 137, 109859 (2020). https://doi.org/10.1016/j.chaos.2020.109859

    Article  MathSciNet  Google Scholar 

  24. Guan, L.A., Gu, H.G., Zhao, Z.G.: Dynamics of subthreshold and suprathreshold resonance modulated by hyperpolarization-activated cation current in a bursting neuron. Nonlinear Dyn. 104, 577–601 (2021). https://doi.org/10.1007/s11071-021-06230-8

    Article  Google Scholar 

  25. Desroches, M., Rinzel, J., Rodrigues, S.: Classification of bursting patterns: a tale of two ducks. PLoS Comput. Biol. 18(2), e1009752 (2022). https://doi.org/10.1371/journal.pcbi.1009752

    Article  Google Scholar 

  26. Felix, J.L.P., Balthazar, J.M., Brasil, R.M.L.R.F.: Comments on nonlinear dynamics of a non-ideal Duffing–Rayleigh oscillator: numerical and analytical approaches. J. Sound Vib. 319(3–5), 1136–1149 (2009). https://doi.org/10.1016/j.jsv.2008.06.036

    Article  Google Scholar 

  27. Tabejieu, L.M.A., Nbendjo, B.R.N., Filatrella, G., et al.: Amplitude stochastic response of Rayleigh beams to randomly moving loads. Nonlinear Dyn. 89, 925–937 (2017). https://doi.org/10.1007/s11071-017-3492-3

    Article  Google Scholar 

  28. Bikdash, M., Balachandran, B., Navfeh, A.H.: Melnikov analysis for a ship with a general roll-damping model. Nonlinear Dyn. 6, 101–124 (1994). https://doi.org/10.1007/BF00045435

    Article  Google Scholar 

  29. Guin, A., Dandapathak, M., Sarkar, S., et al.: Birth of oscillation in coupled non-oscillatory Rayleigh–Duffing oscillators. Commun. Nonlinear Sci. Numer. Simul. 42, 420–436 (2017). https://doi.org/10.1016/j.cnsns.2016.06.002

    Article  MathSciNet  Google Scholar 

  30. Lynch, S.: Small amplitude limit cycles of the generalized mixed Rayleigh–Liénard oscillator. J. Sound Vibr. 178(5), 615–620 (1994). https://doi.org/10.1006/jsvi.1994.1509

    Article  Google Scholar 

  31. Tiwari, A.K., Devi, A.D., Pradeep, R.G., Chandrasekar, V.K.: Isochronous Liénard-type nonlinear oscillators of arbitrary dimensions. Pramana J. Phys. 85, 789–805 (2015). https://doi.org/10.1007/s12043-015-1104-7

    Article  Google Scholar 

  32. Kpomahou, Y.J.F., Miwadinou, C.H., Hinvi, L.A.: Mathematical modelling and parametric resonances of a nonlinear RLC series circuit. Int. J. Nonlinear Dyn. Control. 1(2), 133–153 (2018). https://doi.org/10.1504/IJNDC.2018.093625

    Article  Google Scholar 

  33. Miwadinou, C.H., Monwanou, A.V., Hinvi, L.A., et al.: Effect of amplitude modulated signal on chaotic motions in a mixed Rayleigh–Liénard oscillator. Chaos, Solitons Fract. 113, 89–101 (2018). https://doi.org/10.1016/j.chaos.2018.05.021

    Article  Google Scholar 

  34. Kaviya, B., Suresh, R., Chandrasekar, V.K.: Extreme bursting events via pulse-shaped explosion in mixed Rayleigh–Liénard nonlinear oscillator. Eur. Phys. J. Plus. 137(7), 844 (2022). https://doi.org/10.1140/epjp/s13360-022-02997-w

    Article  Google Scholar 

  35. Kpomahou, Y.J.F., Adéchinan, J.A., Ngounou, A.M., et al.: Bursting, mixed-mode oscillations and homoclinic bifurcation in a parametrically and self-excited mixed Rayleigh–Liénard oscillator with asymmetric double well potential. Pramana J. Phys. 96(4), 176 (2022). https://doi.org/10.1007/s12043-022-02412-0

  36. Ding, Q., Leung, A.Y.T.: The number of limit cycle bifurcation diagrams for the generalized mixed Rayleigh–Liénard oscillator. J. Sound Vib. 322(1–2), 393–400 (2009). https://doi.org/10.1016/j.jsv.2008.11.014

    Article  Google Scholar 

  37. Euzébio, R.D., Llibre, J., Tonon, D.J.: Lower bounds for the number of limit cycles in a generalized Rayleigh–Liénard oscillator. Nonlinearity 35(8), 3883 (2022). https://doi.org/10.1088/1361-6544/ac7691

  38. Yuan, Z., Ke, A., Han, M.A.: On the number of limit cycles of a class of Liénard–Rayleigh oscillators. Phys. D 438, 133366 (2022). https://doi.org/10.1016/j.physd.2022.133366

    Article  Google Scholar 

  39. Lan, C.B., Chen, Z.N., Hu, G.B., et al.: Achieve frequency-self-tracking energy harvesting using a passively adaptive cantilever beam. Mech. Syst. Signal Process. 156, 107672 (2021). https://doi.org/10.1016/j.ymssp.2021.107672

    Article  Google Scholar 

  40. Wang, J.L., Yurchenko, D., Hu, G.B., et al.: Perspectives in flow-induced vibration energy harvesting. Appl. Phys. Lett. 119(10), 100502 (2021). https://doi.org/10.1063/5.0063488

    Article  Google Scholar 

  41. Pande, J., Shnerb, N.M.: Taming the diffusion approximation through a controlling-factor WKB method. Phys. Rev. E 102(6), 062410 (2020). https://doi.org/10.1103/PhysRevE.102.062410

    Article  MathSciNet  Google Scholar 

  42. Baer, S.M., Erneux, T., Rinzel, J.: The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J. Appl. Math. 49(1), 55–71 (1989). https://doi.org/10.1137/0149003

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NNSFC) through Grant No. 12172333 and the Natural Science Foundation of Zhejiang through Grant No. LY20A020003. The authors gratefully acknowledge the reviewers for thoroughly examining our manuscripts and providing useful comments to guide our revision.

Funding

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NNSFC) through Grant No. 12172333 and the Natural Science Foundation of Zhejiang through Grant No. LY20A020003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhua Qian.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Qian, Y. Complex bursting dynamics in a Rayleigh–Liénard oscillator. Nonlinear Dyn 112, 7679–7693 (2024). https://doi.org/10.1007/s11071-024-09455-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09455-5

Keywords

Navigation