Skip to main content
Log in

Fractional-order excitable neural system with bidirectional coupling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Fractional-order dynamics is applicable to biological excitable systems with strong interactions or systems with long-term memory effect. The activity of neural membrane voltage depends on the long-range correlations of ionic conductances. Such a behavior of the membrane voltage with long-range correlation can be better described with a fractional-order dynamics. A fractional-order coupled modified three-dimensional (3D) Morris–Lecar (M–L) neural system has been presented to show the variations in the firing patterns from resting state \( \rightarrow \) oscillatory pattern \( \rightarrow \) bursting and the synchronous behavior by designing a bidirectional coupling mechanism. The fractional exponents are lying between 0 and 1. The predominant controller of the changes of firing behavior is the fractional exponent. The stability of synchronization and nature of the fractional system dynamics have been analyzed. To make the investigations more convincing and biologically plausible, we consider a network of M–L oscillators with bidirectional synaptic coupling functions using global type connections and present the effectiveness of the coupling scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anderson, R.B.: The power law as an emergent property. Memory Cogn. 29, 1061–1068 (2001)

    Article  Google Scholar 

  2. Gilboa, G., Chen, R., Brenner, N.: History-dependent multiple-time-scale dynamics in a single neuron model. J. Neurosci. 25, 6479–6489 (2005)

    Article  Google Scholar 

  3. Drew, P.J., Abbott, L.F.: Models and properties of power-law adaptation in neural systems. J. Neurophysiol. 96, 826–833 (2006)

    Article  Google Scholar 

  4. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  5. Agarwal, O.P., Machado, J.A.T., Sabatier, J.: Special Issue: Fractional Derivatives and Their Applications. Springer Van Godewijckstraat 30, 3311 GZ Dordrecht, Netherlands (2004)

  6. Petras, I.: A note on the fractional-order Chuas systems. Chaos Solitons Fractals 38, 140–147 (2008)

    Article  Google Scholar 

  7. Ortigueira, M.D., Tenreiro Machado, J.A.: What is a fractional derivative? J. Comput. Phys. 293, 4–13 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhou, Y., Ionescu, C., Tenreiro Machado, J.A.: Fractional dynamics and its applications. Nonlinear Dyn. 80, 1661–1664 (2015)

    Article  MathSciNet  Google Scholar 

  9. Anastasio, T.J.: The fractional-order dynamics of brainstem vestibule oculomotor neurons. Biol. Cybern. 72, 69–79 (1994)

    Article  Google Scholar 

  10. Doehring, T.C., Freed, A.D., Carew, E.O., Vesely, I.: Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. J. Biomech. Eng. 127, 700–708 (2005)

    Article  Google Scholar 

  11. Grahovac, N.M., Zigic, M.M.: Modelling of the hamstring muscle group by use of fractional derivatives. Comput. Math. Appl. 59, 1695–1700 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goychuk, I., Hanggi, P.: Fractional diffusion modeling of ion channel gating. Phys. Rev. E 70, 051915 (2004)

    Article  MathSciNet  Google Scholar 

  13. Lundstrom, B.N., Higgs, M.H., Spain, W.J., Fairhall, A.L.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335–1342 (2008)

    Article  Google Scholar 

  14. Langlands, T., Henry, B., Wearne, S.: Fractional cable equation models for anomalous electro diffusion in nerve cells: infinite domain solutions. J. Math. Biol. 59, 761–808 (2009)

  15. Moaddy, K., Radwan, A., Salama, K., Momani, S., Hashim, I.: The fractional order modeling and synchronization of electrically coupled neuron systems. Comput. Math. Appl. 64, 3329–3339 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Teka, W., Marinov, T.M., Santamaria, F.: Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Comput. Biol. 10(3), e1003526 (2014)

    Article  Google Scholar 

  17. Ahmad, W.M., Sprott, J.C.: Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16, 339–351 (2003)

    Article  MATH  Google Scholar 

  18. Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91(3), 034101 (2006)

    Article  Google Scholar 

  19. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization—A Universal Concept in Nonlinear Science. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  20. Li, C.G., Liao, X.F., Yu, J.B.: Synchronization of fractional order chaotic systems. Phys. Rev. E 68, 067203 (2003)

    Article  Google Scholar 

  21. Deng, W.H., Li, C.P.: Chaos synchronization of the fractional Lu system. Phys. A 353, 61–72 (2005)

    Article  Google Scholar 

  22. Abarbanel, H.D.I., Huerta, R., Rabinovich, M.I., Rulkov, N.F., Rovat, P.F., Selverston, A.I.: Synchronized action of synaptically coupled chaotic model neurons. Neural Comput. 8(8), 1567–1602 (1996)

    Article  Google Scholar 

  23. Elson, R.C., Selverston, A.I., Huerta, R., Rulkov, N.F., Rabinovich, M.I., Abarbanel, H.D.I.: Synchronous behavior of two coupled biological neurons. Phys. Rev. Lett. 81, 5692–5695 (1998)

    Article  Google Scholar 

  24. Ma, J., Li, F., Huang, L., Jin, W.Y.: Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system. Commun. Nonlinear Sci. Numer. Simul. 16, 3770–3785 (2011)

    Article  MATH  Google Scholar 

  25. Sun, A., Lu, L., Li, C.: Synchronization of an uncertain small-world neuronal network based on modified sliding mode control technique. Nonlinear Dyn. 82, 1905–1912 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, F., Chen, G., Li, C., Kurths, J.: Chaos synchronization in fractional differential systems. Phil. Trans. R. Soc. A 371, 20120155 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bao, H.B., Cao, J.: Pojective synchronization of fractional-order memristor-based neural networks. Neural Netw. 63, 1–9 (2015)

    Article  MATH  Google Scholar 

  28. Velmurugan, G., Rakkiyappan, R., Cao, J.: Finite-time synchronization of fractional-order memristor-based neural networks. Neural Netw. 73, 36–46 (2016)

    Article  MATH  Google Scholar 

  29. Agrawal, S.K., Srivastava, M., Das, S.: Synchronization of fractional order chaotic systems using active control method. Chaos Solitons Fractals 45, 737–752 (2012)

    Article  Google Scholar 

  30. Srivastava, M., Ansari, S.P., Agrawal, S.K., Das, S., Leung, A.Y.T.: Anti-synchronization between identical and non-identical fractional order chaotic systems using active control method. Nonlinear Dyn. 76, 905–914 (2014)

    Article  MathSciNet  Google Scholar 

  31. Leung, A.Y.T., Li, X.F., Chu, Y.D., Rao, X.B.: Synchronization of fractional-order chaotic systems using unidirectional adaptive full-state linear error feedback coupling. Nonlinear Dyn. 82, 185–199 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with application to communication. Phys. Rev. Lett. 71, 65–68 (1993)

    Article  Google Scholar 

  33. Yang, N., Liu, C.: A novel fractional-order hyperchaotic system stabilization via fractional sliding-mode control. Nonlinear Dyn. 74, 721–732 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gao, L., Wang, Z., Zhou, K., Zhu, W., Wu, Z., Ma, T.: Modified sliding mode synchronization of typical three-dimensional fractional-order chaotic systems. Neurocomputing 166, 53–58 (2015)

    Article  Google Scholar 

  35. Ren, F., Cao, F., Cao, J.: Mittag–Leffler stability and generalized Mittag–Leffler stability of fractional-order gene regulatory networks. Neurocomputing 160, 185–190 (2015)

    Article  Google Scholar 

  36. Mahmoud, G.M., Abed-Elhameed, T.M., Ahmed, M.E.: Generalization of combinationcombination synchronization of chaotic n-dimensional fractional-order dynamical systems. Nonlinear Dyn. 83, 1885–1893 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10(06), 1171–1266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004)

    Article  Google Scholar 

  39. Shi, M., Wang, Z.: Abundant bursting patterns of a fractional-order Morris–Lecar neuron model. Commun. Nonlinear Sci. Numer. Simul. 19, 1956–1969 (2014)

    Article  MathSciNet  Google Scholar 

  40. Kopell, N., Ermentrout, B.: Chemical and electrical synapses perform complementary roles in the synchronization of inter neuronal networks. Proc. Natl. Acad. Sci. USA 101(43), 15482–15487 (2004)

    Article  Google Scholar 

  41. Skinner, F.K., Zhang, L., Velazquez, J.L.P., Carlen, P.L.: Bursting in inhibitory interneuronal networks: a role for gap-junctional coupling. J. Neurophysiol. 81(3), 1274–1283 (1999)

  42. Padmanaban, E., Hens, C., Dana, S.K.: Engineering synchronization of chaotic oscillators using controller based coupling design. Chaos 21, 013110 (2011)

    Article  MATH  Google Scholar 

  43. Tavazoei, M.S., Haeri, M.: A necessary condition for double scroll attractor existence in fractional order systems. Phys. Lett. A 367, 102–113 (2007)

    Article  MATH  Google Scholar 

  44. Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Synchronization and an application of a novel fractional order King Cobra chaotic system. Chaos 24, 033105 (2014)

    Article  MathSciNet  Google Scholar 

  45. Magin, R.L.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32, 1–104 (2004)

    Article  Google Scholar 

  46. Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rssler, Chua and Chen systems. Phys. Lett. A 358, 1–4 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponenets from a time series. Physica 16D, 285–317 (1985)

    MATH  Google Scholar 

  48. Belykh, I., de Lange, E., Hasler, M.: Synchronization of bursting neurons: what matters in the network topology. Phys. Rev. Lett. 94(18), 188101 (2005)

    Article  Google Scholar 

  49. HuiXin, Q., Ma, J., WuYin, J., ChunNi, W.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China 57, 936–946 (2014)

    Google Scholar 

  50. Jhou, F.J., Juang, J., Liang, Y.H.: Multistate and multistage synchronization of Hindmarsh–Rose neurons with excitatory and electrical synapses. IEEE Trans. Circuits Syst. 59(6), 1335–1347 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Kumar Upadhyay.

Appendix

Appendix

The numerical computations of nonlinear fractional order systems have various approximation techniques. We use the Caputo fractional derivative and consider the predictor–corrector algorithm technique to solve the fractional order system as well as the coupled system to show the synchronization effect. The scheme is based on the Adams–Bashforth–Moulton method [17, 29, 43]. This is a time domain approximation scheme. We analyze the method as follows. Consider the fractional order system as

$$\begin{aligned} {D^\gamma }x(t) = G(t,\,\,x(t)),\,\,0< \gamma \le 1,\,\,0 < t \le T, \end{aligned}$$

where \({x^{(m)}}(0) = x_0^{(m)},\,\,m = 1,\,\,2,\ldots ,\,\,k - 1.\) The above fractional order system is equivalent to Volterra integral equation

$$\begin{aligned} x(t)= & {} \sum \limits _{m = 0}^{\left\lceil \gamma \right\rceil - 1} {x_0^{(m)}({{{t^m}} \big / m}!} ) + ({1 \big / {\varGamma (\gamma )}})\\&\int \limits _0^t {{{(t - {t_1})}^{\gamma - 1}}G({t_1},x({t_1}))\hbox {d}{t_1}} , \end{aligned}$$

consider \(h = T/N,\,\,{t_n} = nh\,\,(n = 0,\,\,1,\,\,2,\ldots ,\,\,N).\) The above integral equation can be solved in the following way

$$\begin{aligned}&{x_h}({t_{n + 1}}) = \sum \limits _{m = 0}^{\left\lceil \gamma \right\rceil - 1} {x_0^{(m)}({t^m}/m!)} + ({{{h^\gamma }} \big / {\varGamma (\gamma + 2)}})\\&G({t_{n + 1}},x_h^r({t_{n + 1}})) + ({{{h^\gamma }} \big / {\varGamma (\gamma + 2)}})\sum \limits _{i = 0}^n {\alpha _{i,n + 1}}\\&\quad G({t_i},{x_h}({t_i})), \end{aligned}$$

where

$$\begin{aligned} {\alpha _{i,n + 1}} = \left\{ {\begin{array}{ll} {{n^{\gamma + 1}} - (n - \gamma ){{(n + 1)}^\gamma },\quad i = 0,}\\ \begin{array}{l} {(n - i + 2)^{\gamma + 1}} + {(n - i)^{\gamma + 1}} \\ - 2{(n - i + 1)^{\gamma + 1}},\quad 1 \le \hbox {i} \le n, \end{array}\\ 1,\quad i = n + 1, \end{array}} \right. \end{aligned}$$

and \({\beta _{i,n + 1}} = ({{{h^\gamma }} / \gamma })({(n + 1 - i)^\gamma } - {(n - i)^\gamma }),\) then the discretized function becomes \(x_h^\gamma ({t_{n + 1}}) = \sum \nolimits _{m = 0}^{\left\lceil \gamma \right\rceil - 1} {x_0^{(m)}({{{t^m}} / {m!}})} + ({1 / {\varGamma (\gamma )}})\sum \nolimits _{i = 0}^n {\beta _{i,n + 1}}G({t_i},{x_h}({t_i})).\) The error dynamics function of the above approximation is expressed as follows: \( \max \nolimits _{i = 1,\,\,2,\ldots ,\,\,N} \left| {x({t_i}) - {x_h}({t_i})} \right| = O({h^r}),\) where \(r = \min (2,\,\,1 + \gamma ).\) Using the above mentioned procedure, the nonlinear system of initial value fractional order system can be discretized and solved numerically.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, R.K., Mondal, A. & Teka, W.W. Fractional-order excitable neural system with bidirectional coupling. Nonlinear Dyn 87, 2219–2233 (2017). https://doi.org/10.1007/s11071-016-3185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3185-3

Keywords

Navigation