Skip to main content
Log in

Simplified model and analysis of a pair of coupled thermo-optical MEMS oscillators

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Motivated by the dynamics of microscale oscillators with thermo-optical feedback, a simplified third-order model capturing the key features of these oscillators is developed, where each oscillator consists of a displacement variable coupled to a temperature variable. Further, the dynamics of a pair of such oscillators coupled via a linear spring is analyzed. The analytical procedures used are the variational equation method and the two-variable expansion method. It is shown that the analytical results are in agreement with the results of numerical integration. The bifurcation structure of the system is revealed through a bifurcation diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aubin, K., Zalalutdinov, M., Alan, T., Reichenbach, R.B., Rand, R., Zehnder, A., Parpia, J., Craighead, H.: Limit cycle oscillations in cw laser-driven nems. J. Microelectromech. Syst. 13(6), 1018–1026 (2004). https://doi.org/10.1109/JMEMS.2004.838360

    Article  Google Scholar 

  2. Blocher, D., Rand, R.H., Zehnder, A.T.: Analysis of laser power threshold for self oscillation in thermo-optically excited doubly supported mems beams. Int. J. Non-Linear Mech. 57, 10–15 (2013). https://doi.org/10.1016/j.ijnonlinmec.2013.06.010

    Article  Google Scholar 

  3. Blocher, D., Zehnder, A.T., Rand, R.H., Mukerji, S.: Anchor deformations drive limit cycle oscillations in interferometrically transduced mems beams. Finite Elem. Anal. Des. 49(1), 52–57 (2012). https://doi.org/10.1016/j.finel.2011.08.020

    Article  Google Scholar 

  4. Chávez, J.P., Brzeski, P., Perlikowski, P.: Bifurcation analysis of non-linear oscillators interacting via soft impacts. Int. J. Non-Linear Mech. 92, 76–83 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.02.018

    Article  Google Scholar 

  5. Doedel, E.J., Champneys, A.R., Dercole, F., Fairgrieve, T., Kuznetsov, Y., Oldeman, B., Paffenroth, R., Sandstede, B., Wang, X., Zhang, C.: Auto-07p: continuation and bifurcation software for ordinary differential equations (2008). http://sourceforge.net/projects/auto-07p/. Accessed 12 Aug 2019

  6. Fradkov, A.L., Andrievsky, B.: Synchronization and phase relations in the motion of two-pendulum system. Int. J. Non-Linear Mech. 42(6), 895–901 (2007). https://doi.org/10.1016/j.ijnonlinmec.2007.03.016

    Article  Google Scholar 

  7. Hennig, D.: Existence of nonlinear normal modes for coupled nonlinear oscillators. Nonlinear Dyn. 80(1), 937–944 (2015). https://doi.org/10.1007/s11071-015-1918-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: International Symposium on Mathematical Problems in Theoretical Physics, pp. 420–422. Springer (1975)

  9. Mirollo, R., Strogatz, S.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50(6), 1645–1662 (1990). https://doi.org/10.1137/0150098

    Article  MathSciNet  MATH  Google Scholar 

  10. Nayfeh, A., Mook, D.: Nonlinear Oscillations. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, Hoboken (1979). https://books.google.com/books?id=SQq0QgAACAAJ

  11. Nayfeh, A.H.: A perturbation method for treating nonlinear oscillation problems. J. Math. Phys. 44(1–4), 368–374 (1965). https://doi.org/10.1002/sapm1965441368

    Article  MathSciNet  MATH  Google Scholar 

  12. Pandey, M., Aubin, K., Zalalutdinov, M., Reichenbach, R.B., Zehnder, A.T., Rand, R.H., Craighead, H.G.: Analysis of frequency locking in optically driven mems resonators. J. Microelectromech. Syst. 15(6), 1546–1554 (2006). https://doi.org/10.1109/JMEMS.2006.879693

    Article  Google Scholar 

  13. Pandey, M., Rand, R., Zehnder, A.: Perturbation analysis of entrainment in a micromechanical limit cycle oscillator. Commun. Nonlinear Sci. Numer. Simul. 12(7), 1291–1301 (2007). https://doi.org/10.1016/j.cnsns.2006.01.017

    Article  MATH  Google Scholar 

  14. Rand, R.H.: Notes on Nonlinear Vibrations. Published on-line by The Internet-First University Press (2012). http://ecommons.library.cornell.edu/handle/1813/28989. Accessed 12 Aug 2019

  15. Śliwa, I., Grygiel, K.: Periodic orbits, basins of attraction and chaotic beats in two coupled Kerr oscillators. Nonlinear Dyn. 67(1), 755–765 (2012). https://doi.org/10.1007/s11071-011-0024-4

    Article  MathSciNet  Google Scholar 

  16. Stoker, J.: Nonlinear Vibrations (1966). https://books.google.com/books?id=KFZIJxZYoxgC. Accessed 12 Aug 2019

  17. Storti, D., Rand, R.: Dynamics of two strongly coupled van der Pol oscillators. Int. J. Non-Linear Mech. 17(3), 143–152 (1982). https://doi.org/10.1016/0020-7462(82)90014-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Suchorsky, M.K., Rand, R.H.: A pair of van der pol oscillators coupled by fractional derivatives. Nonlinear Dyn. 69(1), 313–324 (2012). https://doi.org/10.1007/s11071-011-0266-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Valente, A.X.C., McClamroch, N., Mezić, I.: Hybrid dynamics of two coupled oscillators that can impact a fixed stop. Int. J. Non-linear Mech. 38(5), 677–689 (2003)

    Article  MathSciNet  Google Scholar 

  20. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer, Berlin (2011)

    Book  Google Scholar 

  21. Zehnder, A.T., Rand, R.H., Krylov, S.: Locking of electrostatically coupled thermo-optically driven mems limit cycle oscillators. Int. J. Non-Linear Mech. 102, 92–100 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.03.009

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant Number CMMI-1634664. The authors wish to thank Professor John Guckenheimer for advising them on the bifurcations involved in this paper.

Funding

Funding has been received from NSF as acknowledged above. The entire research presented here is the authors’ own. No part of this article has been reproduced from other Articles or is under consideration elsewhere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Rand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

Research on human and animal subjects was not necessary for this project.

Informed consent

All authors consent to submission of this article in its present form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rand, R.H., Zehnder, A.T., Shayak, B. et al. Simplified model and analysis of a pair of coupled thermo-optical MEMS oscillators. Nonlinear Dyn 99, 73–83 (2020). https://doi.org/10.1007/s11071-019-05182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05182-4

Keywords

Navigation