Skip to main content
Log in

Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Motivated by the dynamics of neuronal responses, we analyze the dynamics of the FitzHugh–Nagumo slow–fast system with diffusion and coupling. In the case of diffusion, the system provides a canonical example of Turing–Hopf bifurcation. By analyzing the linear stability of the local equilibrium, the occurrence of Turing–Hopf bifurcation, Turing–Turing bifurcation and coupled Turing–Hopf bifurcation are obtained. The normal form associated with the Turing–Hopf bifurcation is obtained by using the procedure of Song for calculating the normal form of PDEs. Further, in the case of two coupled FitzHugh–Nagumo reaction–diffusion, the Turing–Hopf–Turing bifurcation occurs, and we also find the case about the spatial resonance of Turing–Turing bifurcation arising, and two kinds spatially steady-state solutions are found which are synchronous or anti-phased. Finally, sample numerical results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Hodgkin, A.L., Huxley, A.F.: Aquantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  2. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  Google Scholar 

  3. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  4. Ambrosio, B., Aziz-Alaoui, M.A.: Synchronization and control of coupled reaction–diffusion systems of the FitzHugh–Nagumo type. Comput. Math. Appl. 64, 934–943 (2012)

    Article  MATH  Google Scholar 

  5. Zhao, H., Huang, X., Zhang, X.: Turing instability and pattern formation of neural networks with reaction–diffusion terms. Nonlinear Dyn. 76, 115–124 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Song, Y., Zhang, T., Peng, Y.: Turing–Hopf bifurcation in the reaction–diffusion equations and its applications. Commun Nonlinear Sci. Numer. Simulat. 33, 229–258 (2016)

    Article  MathSciNet  Google Scholar 

  7. Yang, R., Song, Y.: Spatial resonance and Turing–Hopf bifurcations in the Gierer–Meinhardt model. Nonlinear Anal. Real World Appl. 31, 356–387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wei, M., Wu, J., Guo, G.: Steady state bifurcations for a glycolysis model in biochemical reaction. Nonlinear Anal. Real World Appl. 22, 155–175 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rovinsky, A., Menzinger, M.: Interaction of Turing and Hopf bifurcations in chemical systems. Phys. Rev. A 46, 6315–6322 (1992)

    Article  MathSciNet  Google Scholar 

  10. Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor Biol. 245, 220–229 (2007)

    Article  MathSciNet  Google Scholar 

  11. Yang, R., Zhang, C.: Dynamics in a diffusive modified Leslie–Gower predator–prey model with time delay and prey harvesting. Nonlinear Dyn. 87, 863–878 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yang, R., Wei, J.: The effect of delay on a diffusive predator–prey system with modified Leslie–Gower functional response. Bull. Malasian Math. Soc. 40, 51–73 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, X., Jiang, W., Shi, J.: Hopf bifurcation and Turing instability in the reaction–diffusion Holling–Tanner predator-prey model. IMA J. Appl. Math. 78, 287–306 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoff, A., Santos, J.V., Manchein, C., Albuquerque, H.A.: Numerical bifurcation analysis of two coupled FitzHugh–Nagumo oscillators. Eur. Phys. J. B 87, 151 (2014)

    Article  MathSciNet  Google Scholar 

  15. Klaasen, G.A., Mitidieri, E.: Standing wave solutions for a system derived from the Fitzhugh–Nagumo equations for nerve conduction. Soc. Ind. Appl. Math. 17, 1 (1986)

  16. Tuckwell, H.C., Miura, R.M.: A mathematical model for spreading cortical depression. Biophys. J. 23, 257–276 (1978)

    Article  Google Scholar 

  17. Ambrosio, B., Aziz-Alaoui, M.A., Phan, V.L.E.: Large time behavior and synchronization of complex networks of reaction–diffusion systems of FitzHugh–Nagumo type. IMA J. Appl. Math. 84, 416–443 (2019)

    Article  MathSciNet  Google Scholar 

  18. Alexey, J.: Hyperbolic and non-hyperbolic chaos in a pair of coupled alternately excited FitzHugh–Nagumo systems. Commun. Nonlinear Sci. Numer. Simul. 23, 202–208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krupa, M., Touboul, J.D.: Complex oscillations in the delayed FitzHugh–Nagumo equation. J. Nonlinear Sci. 26, 43–81 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Castillo, J.A., Sánchez-Gardun̆o, F.: A Turing–Hopf bifurcation scenario for pattern formation on growing domains. Bull. Math. Biol. 78, 1410–1449 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zheng, Q., Shen, J.: Pattern formation in the FitzHugh–Nagumo model. Comput. Math. Appl. 70, 1082–1097 (2015)

    Article  MathSciNet  Google Scholar 

  22. Labouriau, I.S., Murza, A.C.: Periodic solutions in anarray of coupled FitzHugh–Nagumo cells. J. Math. Anal. Appl. 412, 29–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cattani, A.: FitzHugh–Nagumo equations with generalized diffusive coupling. Math. Biosci. Eng. 11, 203–215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ciszak, M., Euzzor, S., Arecchi, F.T., Meucci, R.: Experimental study of firing death in a network of chaotic FitzHugh–Nagumo neurons. Phys. Rev. E 87, 022919.1–022919.7 (2013)

    Article  Google Scholar 

  25. Tehrani, N.F., Razvan, M.R.: Bifurcation structure of two coupled FHN neurons with delay. Math. Biosci. 270, 41–56 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zemanová, L., Zhou, C., Kurths, J.: Structural and functional clusters of complex brain networks. Phys. D 224, 202–212 (2006)

    Article  MATH  Google Scholar 

  27. Faria, T.: Normal forms and Hopf bifurcation for partial differential equations with delay. Trans. Am. Math. Soc. 352, 2217–2238 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cai, Y., Zhang, C.: Hopf–Pitchfork bifurcation of coupled Van der Pol oscillator with delay. Nonlinear Anal. Model. Control 22, 598–613 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunrui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Ke, A. & Zheng, B. Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type. Nonlinear Dyn 97, 1451–1476 (2019). https://doi.org/10.1007/s11071-019-05065-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05065-8

Keywords

Navigation