Skip to main content
Log in

The Effect of Delay on A Diffusive Predator–Prey System with Modified Leslie–Gower Functional Response

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, a delayed diffusive modified Leslie–Gower-type predator–prey model with Beddington–DeAngelis functional response subject to Neumann boundary condition is considered. The stability/instability of the non-negative equilibria and a detailed Hopf bifurcation analysis are investigated. And explicit formulas for determining the bifurcation direction and the stability of the bifurcating periodic solution are derived by the theory of normal form and center manifold. In addition, some numerical simulations are carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beretta, E., Takeuchi, Y.: Global stability of single-species diffusion Volterra models with continuous time delays. Bull. Math. Biol. 49, 431–448 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Freedman, H., Takeuchi, Y.: Global stability and predator dynamics in a model of prey dispersal in a patchy environment. Nonlinear Anal. 13, 993–1002 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kuang, Y., Takeuchi, Y.: Predator–prey dynamics in models of prey dispersal in two-patch environments. Math. Biosci. 120, 77–98 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zhang, J., Chen, L., Chen, X.: Persistence and global stability for two-species nonautonomous competition Lotka–Voterra patch-system with time delay. Nonlinear Anal. 37, 1019–1028 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Mchich, R., Auger, P., Poggiale, J.: Effect of predator density dependent dispersal of prey on stability of a predator–prey system. Math. Biosci. 206, 343–356 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Xia, Y.H., Romanovski, V.G.: Bifurcation Analysis of a Stage-structured Population Dynamics in a Critical State. Bull. Malays. Math. Sci. Soc. (2), accepted

  7. Leslie, P., Gower, J.: The properties of a stochastic model for the predator–prey type of interaction between two species. Biometrica 47, 219–234 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  8. Aziz-Alaoui, M.: Study of a Leslie–Gower-type tritrophic population. Chaos Solitons Fractals 14, 1275–1293 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Korobeinikov, A.: A Lyapunov function for Leslie–Gower predator–prey models. Appl. Math. Lett. 14, 697–699 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Aziz-Alaoui, M., Daher, M.: Okiye, boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling-type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nindjin, A.F., Aziz-Alaoui, M.A., Cadivel, M.: Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with time delay. Nonlinear Anal. Real World Appl. 7(5), 1104–1118 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo, H., Song, X.: An impulsive predator–prey system with modified Leslie–Gower and Holling type II schemes. Chaos Solitons Fractals 36, 1320–1331 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, Y.P., Liu, Z.J., Haque, M.: Analysis of a Leslie–Gower-type prey-predator model with periodic impulsive perturbations. Commun. Nonlinear Sci. Numer. Simul. 14, 3412–3423 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Song, Y., Yuan, S., Zhang, J.: Bifurcation analysis in the delayed Leslie–Gower predator–prey system. Appl. Math. Model. 33, 4049–4061 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen, L., Chen, F.: Global stability of a Leslie–Gower predator–prey model with feedback controls. Appl. Math. Lett. 22, 1330–1334 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Melese, D., Gakkhar, S.: Stability analysis of a prey–predator model with Beddington–DeAngelis functional response. J. Int. Acad. Phys. Sci. 15, 1–6 (2011)

    MATH  Google Scholar 

  17. Mandal, P., Banerjee, M.: Stochastic persistence and stability analysis of a modified Holling–Tanner model. Math. Meth. Appl. Sci. 36, 1263–1280 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yang, W.: Global asymptotical stability and persistent property for a diffusive predator–prey system with modified Leslie–Gower functional response. Nonlinear Anal. 14(3), 1323–1330 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yang, R., Wei, J.: Bifurcation analysis of a diffusive predator-prey system with modified Leslie-Gower functional response

  20. Faria, T.: Stability and bifurcation for a delayed predator–prey model and the effect of diffusion. J. Math. Anal. Appl. 254, 433–463 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhou, L., Tang, Y., Hussein, S.: Stability and Hopf bifurcation for a delay competitive diffusion system. Chaos Solitons Fractals 37, 87–99 (2008)

    Article  MathSciNet  Google Scholar 

  22. Hu, G., Li, W.: Hopf bifurcation analysis for a delayed predator–prey system with diffusion effects. Nonlinear Anal. Real World Appl. 11, 819–826 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chen, S., Shi, J., Wei, J.: A note on Hopf bifurcations in a delayed diffusive Lotka–Volterra predator–prey system. Comput. Math. Appl. 62, 2240–2245 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wu, J.: Theory and Applications of Partial Functional-Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  25. Ruan, S., Wei, J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A 10, 863–874 (2003)

    MATH  MathSciNet  Google Scholar 

  26. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China (Nos. 11031002, 11371111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Wei.

Additional information

Communicated by Shangjiang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Wei, J. The Effect of Delay on A Diffusive Predator–Prey System with Modified Leslie–Gower Functional Response. Bull. Malays. Math. Sci. Soc. 40, 51–73 (2017). https://doi.org/10.1007/s40840-015-0261-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-015-0261-7

Keywords

Navigation