Skip to main content
Log in

Analysis of a reduced-order nonlinear model of a multi-physics beam

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article studies nonlinear behaviors of a two-dimensional beam with piezoelectric patches on it. Governing electromechanical equations of the beam taking into account several coupled piezoelectric patches, at different positions, are derived. Then, spatiotemporal variables of the system are separated. A methodology is proposed, for the detection of different mode functions and corresponding frequencies of the multi-physics beam, via using space equations of the system. As a representative example, a homogeneous beam with a single piezoelectric patch is considered. The paper is followed by consideration of two particular cases: (i) a single mode of the system is in resonance with the direct lateral-base excitation and (ii) two modes of the system present an internal resonance, while the first one is in resonance with the lateral-base excitation. For both cases, the electromechanical system equations are projected on its targeted mode(s). The temporal equations are treated via a multiple scale method leading to detections of its fixed points. The effects of one of the nonlinear coefficients of the piezoelectric patch, on the overall responses of the multi-physics beam, in terms of changing its behavior from hardening to softening (or vice versa), are discussed and commented upon. Moreover, it is shown that the piezoelectric patch is able to control the targeted mode(s) of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\(\gamma \) :

Torsion angle

\(\epsilon _b\), \(\epsilon _p\) :

Strain tensors of the beam and the piezoelectric patches

\((\zeta ,\eta ,\xi )\) :

Coordinates in the curvilinear coordinate system

\(\kappa \) :

Small parameter for the multiple scale method

\(\lambda \) :

Lagrange multiplier

\(\rho (s,t)\) :

The curvature vector

\(\sigma _b\), \(\sigma _p\) :

Stress tensors of the beam and the piezoelectric patches

\(\sigma \),\(\sigma _1\), \(\sigma _2\) :

Detuning parameters

\((\varXi ,\theta ,\beta )\) :

The Euler angles

\(\varPi (s,t)\) :

The absolute angular velocity

\(\phi (s)\) :

Spatial variable of the displacement v(st)

\(\omega _v\) :

Natural angular frequency

\((\mathbf {e}_\zeta ,\mathbf {e}_\eta ,\mathbf {e}_\xi )\) :

Local curvilinear coordinate system

\((\mathbf {e}_x,\mathbf {e}_y,\mathbf {e}_z)\) :

Initial coordinate system

(uvw):

Coordinates in the initial coordinate system

s :

Curvilinear abscissa

E :

Electrical field

\(H(\epsilon _p,E)\) :

Free density energy of the piezoelectric patches

\(\mathcal {H}\) :

Heaviside function

J :

Electrical intensity

\(\mathcal {L}\) :

Lagrangian

l :

The distance between the edge of the piezoelectric patches and the neutral axis

\(q_i\) :

Generalized coordinates

\(Q_v\) :

General external forcing term

r(t):

Temporal variable of the displacement v(st)

t :

Time variable

\(T_b\), \(T_p\) :

Kinetic energies of the beam and the piezoelectric patches

\(U_b\), \(U_p\) :

Potential energies of the beam and the piezoelectric patches

V :

Electrical tension

\(W_\mathrm{NC}\) :

Nonconservative works

\(\mu _b\), \(\mu _p\) :

Mass density of the beam and the piezoelectric patches

b, \(b_p\) :

Width of the beam and piezoelectric patches

\(E_b\), \(E_p\) :

Young modulus of the beam and the piezoelectric patches

\(G_b\) :

Shear modulus of the beam

\(h_b\), \(h_p\) :

Thickness of the beam and the piezoelectric patches

L, \(L_p\) :

Length of the beam and the piezoelectric patches

\(x_1\), \(x_2\), ...,\(x_n\) :

Positions of the piezoelectric patches on the beam

R :

Resistor of the electrical circuits

\(s_{11}\), \(d_{31}\), \(\xi _{33}\), \(r_{331}\), \(s_{111}\), \(d_{311}\), \(\xi _{333}\) :

Constants of the piezoelectric materials

References

  1. Thomas, O., Deü, J.F., Ducarne, J.: Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and electromechanical coupling coefficients. Int. J. Numer. Methods Eng. 80, 235–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Badel, A., Sebald, G., Guyomar, D., Lallart, M., Lefeuvre, E., Richard, C., Qiu, J.: Piezoelectric vibration control by synchronized switching on adaptive voltage sources: towards wide band semi-active damping. J. Acoust. Soc. Am. 119, 2815 (2006)

    Article  Google Scholar 

  3. Soltani, P., Kerschen, G.: The nonlinear piezoelectric tuned vibration absorber. J. Smart Mater. Struct. 24(7), 0705015 (2015)

    Article  Google Scholar 

  4. Berardengo, M., Thomas, O., Giraud-Audine, C., Manzoni, S.: Improved resistive shunt by means of negative capacitance: new circuit, performances and multi-mode control. J. Smart Mater. Struct. 25, 075033 (2016)

    Article  Google Scholar 

  5. Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilever piezoelectric energy harvesters. J. Vib. Acoust. 130, (2008)

  6. Yi, K., Monteil, M., Collet, M., Chesne, S.: Smart metacomposite-based systems for transient elastic wave energy harvesting. J. Smart Mater. Struct. 26, 035040 (2017)

    Article  Google Scholar 

  7. Cao, D.X., Leadenham, S., Erturk, A.: Internal resonance for nonlinear vibration energy harvesting. Eur. Phys. J. Spec. Top. 224, 2867–2880 (2015)

    Article  Google Scholar 

  8. Crawley, E.F., Anderson, E.H.: Detailed models of piezoceramic actuation of beams. J. Intell. Mater. Syst. Struct. 1(1), 4–25 (1990)

    Article  Google Scholar 

  9. Chattopadhyay, A., Seeley, C.E.: A higher order theory for modeling composite laminates with induced strain actuators. J. Compos. B: Eng. 28(3), 243–252 (1997)

    Article  Google Scholar 

  10. Benjeddou, A.: Field-dependent nonlinear piezoelectricity: a focused review. Int. J. Smart Nano Mater. 9(1), 98–114 (2018)

    Article  Google Scholar 

  11. Hodges, D.H., Ormiston, R.A., Peters, D.A.: On the nonlinear deformation geometry of Euler–Bernoulli Beams. J. NASA Tech. Paper 1566, (1980)

  12. Crespo Da Silva, M.R.M.: Non-linear flexural-flexural-torsional-extensional dynamics of beams-I. Formulation. Int. J. Solids Struct. 24, 1225–1234 (1988)

    Article  MATH  Google Scholar 

  13. Crespo Da Silva, M.R.M.: Non-linear flexural-flexural-torsional-extensional dynamics of beams-IT. Response analysis. Int. J. Solids Struct. 24, 1235–1242 (1988)

    Article  MATH  Google Scholar 

  14. Pai, P.F., Nayfeh, A.H.: Three-dimensional nonlinear vibrations of composite beams-I. Equations of motion. J. Nonlinear Dyn. 1, 477–502 (1990)

    Article  Google Scholar 

  15. Pai, P.F., Nayfeh, A.H.: Three-dimensional nonlinear vibrations of composite beams-II. Flapwise excitations. J. Nonlinear Dyn. 2, 1–34 (1991)

    Article  Google Scholar 

  16. Pai, P.F., Nayfeh, A.H.: Three-dimensional nonlinear vibrations of composite beams-III. Chordwise excitations. J. Nonlinear Dyn. 2, 137–156 (1991)

    Article  Google Scholar 

  17. Li, H., Preidikman, S., Balachandran, B., Mote Jr., C.D.: Nonlinear free and forced oscillations of piezoelectric microresonators. J. Micromech. Microeng. 16, 356–367 (2006)

    Article  Google Scholar 

  18. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. J. Nonlinear Dyn. 67, 1147–1160 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. J. Nonlinear Dyn. 67, 1221–1232 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mam, K., Peigney, M., Siegert, D.: Finite strain effects in piezoelectric energy harvesters under direct and parametric excitations. J. Sound Vib. 389, 411–437 (2017)

    Article  Google Scholar 

  21. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley-VCH (1995)

  22. Malaktar, P.: Nonlinear Vibrations of Cantilever Beams and Plates. PHD Thesis at Virginia Polytechnic Institue and State University, Blacksburg, Virginia (2003)

  23. Lacarbonara, W.: Nonlinear Structural Mechanics. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  24. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Berlin (2015)

    Google Scholar 

  25. Hassan, A.: Use of transformations with the higher order method of multiple scales to determine the steady state periodic response of harmonically excited non-linear oscillators, Part I: Transformation of derivative. J. Sound Vib. 178(1), 1–19 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hassan, A.: Use of transformations with the higher order method of multiple scales to determine the steady state periodic response of harmonically excited non-linear oscillator. Part II: Transformation of detuning. J. Sound Vib. 178(1), 21–40 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Luongo, A., Paolone, A.: On the reconstitution problem in the multiple time-scale method. Nonlinear Dyn. 19, 133–156 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nayfeh, A.H.: Resolving controversies in the application of the method of multiple scales and the generalized method of averaging. Nonlinear Dyn. 40, 61–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ben Brahim, N.: Approche multiéchelle pour le comportement vibratoire des structures avec un défaut de rigidité. Order Number: 2014NICE4035f. Université de Tunis El Manar et de Nice-Sophia Antipolis-UFR (2014)

  30. Gatti, G., Brennan, M.J., Kovacic, I.: On the interaction of the responses at the resonance frequencies of a nonlinear two-degrees-of-freedom system. Phys. D 239, 591–599 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Detroux, T., Noël, J.-P., Virgin, L.N., Kerschen, G.: Experimental study of isolas in nonlinear systems featuring modal interactions. PLoS One 13(3), (2018)

  32. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New-York (1944)

    MATH  Google Scholar 

  33. Ballas, R.G.: Piezoelectric Multilayer Beam Bending Actuators. Springer, Berlin (2007)

    Google Scholar 

  34. Miu, D.K.: Mechatronic: Electromechanics and Contromechanics. Springer, Berlin (1993)

    Book  Google Scholar 

  35. IEEE Standard on Piezoelectricity. Journal of American National Standards Institute, (1987)

  36. Abdelkefi, A.: Global Nonlinear Analysis of Piezoelectric Energy Harvesting from ambient and aeroeleastic vibration. PHD Thesis at Virginia Polytechnic Institue and State University, Blacksburg, Virginia (2012)

  37. Ducarne, J., Thomas, O., Deü, J.-F.: Placement and dimension optimization of shunted piezoelectric patches for vibration reduction. J. Sound Vib. 211, 3286–3303 (2012)

    Article  Google Scholar 

  38. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-VCH, New York (1995)

    Book  MATH  Google Scholar 

  39. Cochelin, B., Vergez, C.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324, 243–262 (2009)

    Article  Google Scholar 

  40. Cochelin, B.: A path-following technique via an asymptotic-numerical method. J. Comput. Struct. 53(5), 1181–1192 (1994)

    Article  MATH  Google Scholar 

  41. ManLab, An interactive path-following and bifurcation analysis software, Version 2.0

Download references

Acknowledgements

The authors would like to thank the following organizations for supporting this research: (i) The “Ministère de la transition écologique et solidaire” and (ii) LABEX CELYA (ANR-10-LABX-0060) of the “Université de Lyon” within the program “Investissement d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Guillot.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

We suppose that the neutral axis of the beam undergoes deformation from an inertial coordinate system \((\mathbf {e}_x,\mathbf {e}_y,\mathbf {e}_z)\) to a local curvilinear coordinate system \((\mathbf {e}_\xi ,\mathbf {e}_\eta ,\mathbf {e}_\zeta )\). The beam presents three Euler-angle rotations, namely \(\chi (s,t)\), \(\theta (s,t)\) and \(\beta (s,t)\), where s stands for the distance along the deformed beam axis measured from the origin and t for the time, see Fig. 22. The absolute angular velocity \(\varPi (s,t)\) for the curvilinear axis system is defined as [21, 22]:

$$\begin{aligned} \varPi (s,t)= & {} (\dot{\beta }-\dot{\xi }\sin (\theta ))\mathbf {e}_\xi +(\dot{\xi }\cos (\theta )\sin (\beta )\nonumber \\&+\,\dot{\theta }\cos (\beta ))\mathbf {e}_\eta \nonumber \\&+\,\big (\dot{\xi }\cos (\theta )\cos (\beta )-\dot{\theta }\sin (\beta )\big )\mathbf {e}_\zeta \nonumber \\= & {} \varPi _\xi \mathbf {e}_\xi +\varPi _\eta \mathbf {e}_\eta +\varPi _\zeta \mathbf {e}_\zeta \end{aligned}$$
(117)

where “\(\ \dot{} \ \)” stands for the time derivative of the argument, i.e., \(\displaystyle {\frac{\partial }{\partial t}}\). With the Kirchhoff’s kinetic analogy [32], the curvature vector \(\rho (s,t)\) can be defined by replacing the time derivatives by the spatial derivatives in Eq. 117; it reads [21, 22]:

$$\begin{aligned} \rho (s,t)= & {} (\beta '-\xi '\sin (\theta ))\mathbf {e}_\xi +(\xi '\cos (\theta )\sin (\beta )\nonumber \\&+\,\theta '\cos (\beta ))\mathbf {e}_\eta \nonumber \\&+\,\big (\xi '\cos (\theta )\cos (\beta )-\theta '\sin (\beta )\big )\mathbf {e}_\zeta \nonumber \\= & {} \rho _\xi \mathbf {e}_\xi +\rho _\eta \mathbf {e}_\eta +\rho _\zeta \mathbf {e}_\zeta \end{aligned}$$
(118)

where “\( \ ' \ \)” stands for the space derivative of the argument, i.e., \(\displaystyle {\frac{\partial }{\partial s}}\).

It is assumed that the cross section remains straight. Let us study the kinetic of an elementary length ds on the neutral axis due to the deformation. After a transformation \(\digamma (t)\), it becomes \(ds^*\), see Fig. 23. This transformation \(\digamma (t)\) corresponds to change of displacement components in the inertial coordinate to the curvilinear coordinate, i.e., change of (uvw) to \((u+du,v+dv,w+dw)\). The components du, dv and dw are defined via the Euler angles, as shown in Fig. 23:

$$\begin{aligned} \tan (\chi )= & {} \frac{v'}{1+u'} \nonumber \\ \tan (\theta )= & {} \displaystyle {\frac{w'}{\sqrt{(1+u')^2+v'^2}}} \end{aligned}$$
(119)

The strain e is defined as:

$$\begin{aligned} \displaystyle {e=\frac{ds^*-ds}{ds}=\sqrt{(1+u')^2+v'^2+w'^2}-1} \end{aligned}$$
(120)

The beam’s neutral axis is supposed to be inextensional, i.e., \(e=0\). Equation 120 reads:

$$\begin{aligned} (1+u')^2+v'^2+w'^2=1 \end{aligned}$$
(121)

Let us consider a particle P on an arbitrary coordinate of the cross section and a particle C on its neutral axis in the initial configuration of the beam. The local coordinates of the particle P read as \((\eta ,\zeta )\). The particle C is at a distance s from the origin O, as depicted in Fig. 24. C and P are transferred to \(C^*\) and \(P^*\) due to the transformation \(\digamma (t)\) of the beam. Thus, we can write:

Fig. 22
figure 22

The Euler-angle rotations protocol: \(\chi (s,t)\), \(\theta (s,t)\) and \(\beta (s,t)\)

Fig. 23
figure 23

Transformation \(\digamma (t)\) of an elementary length ds to the element \(ds^*\) due to the deformation

Fig. 24
figure 24

Transformation \(\digamma (t)\) of a particle P on the cross section of the beam due to the deformation (\(P\rightarrow P^*\))

$$\begin{aligned}&\overrightarrow{OC}+\overrightarrow{CP}=s\mathbf {e}_x+\eta \mathbf {e}_y+\zeta \mathbf {e}_z\nonumber \\&\overrightarrow{OC^*}+\overrightarrow{C^*P^*}=(s+u)\mathbf {e}_x+v\mathbf {e}_y\nonumber \\&\quad +\,w\mathbf {e}_z+\eta \mathbf {e}_\eta +\zeta \mathbf {e}_\zeta \end{aligned}$$
(122)

or,

$$\begin{aligned} d(\overrightarrow{OP})= & {} ds\mathbf {e}_x+d\eta \mathbf {e}_y+d\zeta \mathbf {e}_z\nonumber \\ d(\overrightarrow{OP^*})= & {} (1+u')ds\mathbf {e}_x+v'ds\mathbf {e}_y+w'ds\mathbf {e}_z\nonumber \\&+\,d\eta \mathbf {e}_\eta +\eta d\mathbf {e}_\eta +d\zeta \mathbf {e}_\zeta +\zeta d\mathbf {e}_\zeta \end{aligned}$$
(123)

For a fixed s, it is also known that:

$$\begin{aligned} \displaystyle {\frac{d\mathbf {e}_\wp }{dt}=\varPi \times \mathbf {e}_\wp } \ \ \ \text {with} \ \ \wp \rightarrow \xi ,\eta ,\zeta \end{aligned}$$
(124)

when \(\times \) stands for the vector product of two vectors. With Kirchhoff’s analogy [32]:

$$\begin{aligned} \displaystyle {\frac{d\mathbf {e}_\wp }{ds}=\rho \times \mathbf {e}_\wp } \ \ \ \text {with} \ \ \wp \rightarrow \xi ,\eta ,\zeta \end{aligned}$$
(125)

Thus, the deformations of the vectors become:

$$\begin{aligned} d(\overrightarrow{OP})= & {} ds\mathbf {e}_x+d\eta \mathbf {e}_y+d\zeta \mathbf {e}_z\nonumber \\ d(\overrightarrow{OP^*})= & {} (1+\eta \zeta \rho _\eta -\eta \zeta \rho _\eta )ds\mathbf {e}_\xi \nonumber \\&+\,(d\eta -\zeta \xi \rho _\eta ds)\mathbf {e}_\eta \nonumber \\&+\,(d\zeta +\eta \xi \rho _\eta ds)\mathbf {e}_\zeta \end{aligned}$$
(126)

From the definition of the Green’s strain tensor:

$$\begin{aligned}&d(\overrightarrow{OP^*})\cdot d(\overrightarrow{OP^*})-d(\overrightarrow{OP})\cdot d(\overrightarrow{OP})\nonumber \\&=2[ds \ \ d\eta \ \ d\zeta ]\varvec{\epsilon _{b}}[ds \ \ d\eta \ \ d\zeta ]^T \end{aligned}$$
(127)

where \(\varvec{\epsilon _{b}}\) is the Green’s strain tensor of the homogeneous beam. From Eq. 126, it is obtained:

$$\begin{aligned}&d(\overrightarrow{OP^*})\cdot d(\overrightarrow{OP^*})-d(\overrightarrow{OP})\cdot d(\overrightarrow{OP})\nonumber \\&\quad =2(\zeta \rho _\eta -\eta \rho _\zeta -2\zeta \eta \rho _\zeta \rho _\eta )ds^2\nonumber \\&\qquad -\,2\zeta \rho _\xi d\eta ds +2\eta \rho _\xi dsd\zeta \end{aligned}$$
(128)

neglecting higher-order terms of \(\rho _\wp \) (\(\wp \mapsto \xi ,\zeta ,\eta \)), Eq. 128 becomes:

$$\begin{aligned}&d(\overrightarrow{OP^*})\cdot d(\overrightarrow{OP^*})\nonumber \\&\quad -\,d(\overrightarrow{OP})\cdot d(\overrightarrow{OP})=2(\zeta \rho _\eta -\eta \rho _\zeta )ds^2\nonumber \\&\quad -\,2\zeta \rho _\xi d\eta ds+2\eta \rho _\xi dsd\zeta \end{aligned}$$
(129)

Appendix 2

The matrix \(\varvec{G}\) of Eq. 38 reads as:

$$\begin{aligned} \varvec{G}= & {} \begin{bmatrix} \varvec{C1}&\varvec{O}&...&\varvec{O}&\varvec{C2}\\ \varvec{CL}(K_1,x_1)&-\varvec{CL}(K_2,x_1)&...&\varvec{O}&\varvec{O}\\ \vdots&\vdots&\ddots&\vdots&\vdots \\ \varvec{O}&\varvec{O}&...&\varvec{CL}(K_2,x_{2n})&-\varvec{CL}(K_1,x_{2n}) \end{bmatrix}\nonumber \\ \end{aligned}$$
(130)

where \(\varvec{O}\) is a \(4\times 4\) zero matrix, and:

$$\begin{aligned} \varvec{C1}= & {} \begin{bmatrix} 1&0&1&0 \\ 0&1&0&1 \\ 0&0&0&0 \\ 0&0&0&0 \end{bmatrix} \end{aligned}$$
(131)
$$\begin{aligned}&\varvec{C2}= \begin{bmatrix} 0&0&0&0 \\ 0&0&0&0 \\ -K_1^2\cos (K_1L)&-K_1^2\sin (K_1L)&K_1^2\cosh (K_1L)&K_1^2\sinh (K_1L) \\ K_1^3\sin (K_1L)&-K_1^3\cos (K_1L)&K_1^3\sinh (K_1L)&K_1^3\cosh (K_1L) \end{bmatrix} \end{aligned}$$
(132)
$$\begin{aligned}&\varvec{CL}(K,x)= \begin{bmatrix} \cos (Kx)&\sin (Kx)&\cosh (Kx)&\sinh (Kx) \\ -K\sin (Kx)&K\cos (Kx)&K\sin (Kx)&\cosh (Kx)\\ -K^2EI\cos (Kx)&-K^2EI\sin (Kx)&K^2EI\cosh (Kx)&K^2EI\sinh (Kx)\\ K^3EI\sin (Kx)&-K^3EI\cos (Kx)&K^3EI\sinh (Kx)&K^3EI\cosh (Kx) \end{bmatrix}\nonumber \\ \end{aligned}$$
(133)

with general EI and K, from Eq. 35, related as:

$$\begin{aligned} K^4=\frac{\omega _{v}^2\mu }{EI} \end{aligned}$$
(134)

Appendix 3

$$\begin{aligned} \varvec{\tilde{G}}= \begin{bmatrix} \varvec{\tilde{C1}}&\varvec{\tilde{0}}&...&\varvec{\tilde{0}}&\varvec{\tilde{C2}}\\ \varvec{\tilde{CL}}(K_1,x_1)&-\varvec{CL}(K_2,x_1)&...&\varvec{O}&\varvec{O}\\ \vdots&\vdots&\ddots&\vdots&\vdots \\ \varvec{\tilde{O}}&\varvec{O}&...&\varvec{CL}(K_2,x_{2n})&-\varvec{CL}(K_1,x_{2n}) \end{bmatrix}\nonumber \\ \end{aligned}$$
(135)

when \(\varvec{\tilde{O}}\) and \(\varvec{\tilde{0}}\) are \(3\times 3\) and \(3\times 4\) zero matrix, respectively, and:

$$\begin{aligned} \varvec{\tilde{C1}}= & {} \begin{bmatrix} 1&0&1\\ 0&0&0\\ 0&0&0 \end{bmatrix} \end{aligned}$$
(136)
$$\begin{aligned}&\varvec{\tilde{C2}}= \begin{bmatrix} 0&\qquad 0&\qquad 0&\qquad 0\\ -K^2\cos (K_1L)&\qquad -K^2\sin (K_1L)&\qquad K^2\cosh (K_1L)&\qquad K^2\sinh (K_1L) \\ K^3\sin (K_1L)&\qquad -K^3\cos (K_1L)&\qquad K^3\sinh (K_1L)&\qquad K^3\cosh (K_1L) \end{bmatrix}\end{aligned}$$
(137)
$$\begin{aligned}&\varvec{\tilde{CL}(K_1,x_1)}= \begin{bmatrix} K_1\cos (K_1x_1)&\qquad K_1\sin (K_1x_1)&\qquad \cosh (K_1x_1)\\ -K_1^2EI_1\sin (K_1x_1)&\qquad K_1^2EI_1\cosh (K_1x_1)&\qquad K_1^2EI_1\sinh (K_1x_1)\\ -K_1^3EI_1\cos (K_1x_1)&\qquad K_1^3EI_1\sinh (K_1x_1)&\qquad K_1^3EI_1\cosh (K_1x_1) \end{bmatrix} \end{aligned}$$
(138)
$$\begin{aligned} \varvec{\tilde{E}}= & {} \begin{bmatrix} 0\\ 0\\ 0\\ -A_1\cos (K_1x_1)\\ A_1K_1\sin (K_1x_1)\\ A_1K_1^2EI_1\cos (K_1x_1)\\ -A_1K_1^3EI_1\sin (K_1x_1)\\ 0\\ \vdots \\ 0 \end{bmatrix} \end{aligned}$$
(139)

Appendix 4

1.1 Stability analysis of equilibrium points

Let us perturb \(|a_\tau |\) and \(\alpha _\tau \) linearly in Eq. 81 as:

$$\begin{aligned} \begin{array}{lll} |a_\tau |&{}\rightarrow &{}|a_\tau |+\varDelta |a_\tau | \\ \alpha _\tau &{}\rightarrow &{}\alpha _\tau +\varDelta \alpha _\tau \end{array} \end{aligned}$$
(140)

Separation of the real and imaginary parts leads to:

$$\begin{aligned} \begin{bmatrix} D_2|a_\tau | \\ D_2\alpha _\tau \end{bmatrix} =\varvec{Inst} \times \begin{bmatrix} \varDelta |a_\tau | \\ \varDelta \alpha _\tau \end{bmatrix} \end{aligned}$$
(141)

with:

$$\begin{aligned} \begin{array}{lcc} \varvec{Inst}=\frac{1}{2\omega _{v\tau }G_0} \begin{bmatrix} Inst_{11} &{} Inst_{12}\\ Inst_{21}&{} Inst_{22} \end{bmatrix} \\ Inst_{11}=-\omega _{v\tau }G_1+\mathcal {Z}_i+3\mathcal {P}_i|a_\tau |^2 \\ Inst_{12}=(2\omega _{v\tau }G_0\sigma +\mathcal {Z}_r)|a_\tau |\\ \quad +\,(3G_4-4\omega _{v\tau }^2G_5+\mathcal {P}_r)|a_\tau |^3 \\ Inst_{21}=\frac{2\omega _{v\tau }G_0+\mathcal {Z}_r+3\mathcal {P}_r|a_\tau |^2}{a_\tau } \\ Inst_{22}= -\omega _{v\tau }G_1+\mathcal {Z}_i+\mathcal {P}_i|a_\tau |^2 \end{array} \end{aligned}$$
(142)

Then, if the real part of at least one of the eigenvalues of \(\varvec{Inst}\) is positive, the point \((|a_\tau |,\sigma )\) is unstable.

Appendix 5

$$\begin{aligned} \begin{array}{l c l} G_0=\int _{0}^{L}\mu (s)\phi _\iota ^2(s)ds \\ G_1=c_v\int _{0}^{L}\phi _\iota ^2(s)ds \\ G_2=F\int _{0}^{L}\mu (s)\phi _\iota (s)ds \\ G_3=\int _{0}^{L}(-EI(s))\phi _\iota ^{(iv)}(s)\phi _\iota (s)ds \\ G_4=\int _{0}^{L}(-EI(s))[\phi _\iota '(s)\big (\phi _\iota '(s)\phi _\iota ''(s)\big )']'ds \\ G_5=\int _{0}^{L}[\phi _\iota '(s)\int _{s}^{L}\frac{-\mu (s)}{2}\int _{s}^{0}\phi _\iota '(s)^2ds \ ds]'\phi _\iota (s) ds \\ G_6=\int _{x_1}^{x_2}\int _{y_1}^{y_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}s_{111}\eta ^3d\zeta d\eta \phi _\iota ''(s)^3ds \\ G_7=\int _{x_1}^{x_2}\int _{y_1}^{y_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}\frac{d_{311}}{h_p}\eta ^2d\zeta d\eta \phi _\iota ''(s)^2ds \\ \displaystyle {G_8=\int _{x_1}^{x_2}\int _{y_1}^{y_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}\eta \frac{-d_{31}}{h_p}d\zeta d\eta \phi _\iota ''(s) ds} \\ \displaystyle {G_9=\int _{x_1}^{x_2}\int _{y_1}^{y_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}\eta \frac{r_{331}}{h_p^2}d\zeta d\eta \phi _\iota ''(s) ds } \end{array} \end{aligned}$$
(143)
$$\begin{aligned} \begin{array}{lll} F_1=\frac{1}{R} \\ F_2=\int _{x_1}^{x_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}d_{31}(y_1-y_2)\phi _\iota ''(s)d\zeta ds \\ F_3=\int _{x_1}^{x_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}\frac{2(y_2-y_1)}{h_p}r_{331}\phi _\iota ''(s)d\zeta ds \\ F_4=\int _{x_1}^{x_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}2d_{311}(y_2^2-y_1^2)\phi _\iota ''(s)^2d\zeta ds \\ F_5=\int _{x_1}^{x_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}\frac{\xi _{33}}{h_p}d\zeta ds \\ F_6=\int _{x_1}^{x_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}\frac{-2\xi _{333}}{h_p^2}d\zeta ds \\ \end{array} \end{aligned}$$
(144)

Appendix 6

Supposing only \(G_2=G_1=0\) imposes that coefficients in Eq. 85 are simplified as:

$$\begin{aligned} \gimel _0'= & {} (3G_4-4\omega _{v\tau }^2G_5+\mathcal {P}_r)^2+\mathcal {P}_i^2\nonumber \\ \gimel _1'= & {} 4G_0\omega _{v\tau }(3G_4-4\omega _{v\tau }^2G_5+\mathcal {P}_r)\sigma \nonumber \\ \gimel _2'= & {} (2G_0\omega _{v\tau })^2\sigma ^2\nonumber \\ \gimel _3'= & {} 0 \end{aligned}$$
(145)

Equation 84, if \(|a_\tau |\ne 0\), can be written as:

$$\begin{aligned} \mathcal {X}(\gimel _0'\mathcal {X}^2+\gimel _1'\sigma \mathcal {X}+\gimel _2'\sigma ^2)=0 \end{aligned}$$
(146)

with \(\mathcal {X}=|a_\tau |^2\), \(\gimel _0'>0\) and \(\gimel _2'>0\).

Thus, the discriminant of Eq. 146 is defined as:

$$\begin{aligned} \varDelta _d=\gimel _1'^2-4\gimel _0'\gimel _2' \end{aligned}$$
(147)

From the expression of the constants \(\gimel \) in Eqs. 85 and 145, the discriminant is reduced as:

$$\begin{aligned} \displaystyle {\varDelta _d=-16w_1^2G_0^2\mathcal {P}_i^2} \end{aligned}$$
(148)

This way, \(\varDelta _d\) is negative and there is no real solution for \(\mathcal {X}\) except for the special case \(\mathcal {P}_i=0\). This case corresponds to the case when there is no current in the system (see Eqs. 6769).

Appendix 7

$$\begin{aligned} N_0= & {} \int _{0}^{L}\mu (s)\phi _n^2(s)ds \nonumber \\ N_1= & {} c_v\int _{0}^{L}\phi _n^2(s)ds \nonumber \\ N_2= & {} F\int _{0}^{L}\mu (s)\phi _n(s)ds \nonumber \\ N_3= & {} \int _{0}^{L}(-EI(s))\phi _n^{(iv)}(s)\phi _n(s)ds \nonumber \\ N_4= & {} \int _{0}^{L}(-EI(s))[\phi _m'(s)\big (\phi _m'(s)\phi _m''(s)\big )']'\phi _n(s)ds \nonumber \\ N_5= & {} \int _{0}^{L}(-EI(s))[\phi _m'(s)\big (\phi _n'(s)\phi _n''(s)\big )'\nonumber \\&+\,\phi _n'(s)\big (\phi _m'(s)\phi _n''(s)\big )'\nonumber \\&+\,\phi _n'(s)\big (\phi _n'(s)\phi _m''(s)\big )']'\phi _n(s)ds \nonumber \\ N_6= & {} \int _{0}^{L}(-EI(s))[\phi _n'(s)\big (\phi _m'(s)\phi _m''(s)\big )'\nonumber \\&+\,\phi _m'(s)\big (\phi _m'(s)\phi _n''(s)\big )'\nonumber \\&+\,\phi _m'(s)\big (\phi _n'(s)\phi _m''(s)\big )']'\phi _n(s)ds \nonumber \\ N_7= & {} \int _{0}^{L}(-EI(s))[\phi _n'(s)\big (\phi _n'(s)\phi _n''(s)\big )']'\phi _n(s)ds \nonumber \\ N_8= & {} \int _{0}^{L}[\phi _m'(s)\int _{s}^{L}\frac{-\mu (s)}{2}\int _{s}^{0}\phi _m'(s)^2ds \ ds]\phi _n(s)ds \nonumber \\ N_9= & {} \int _{0}^{L}[\phi _m'(s)\int _{s}^{L}(-\mu (s))\int _{s}^{0}\phi _m'(s)\phi _n'(s)ds \ ds]\phi _n(s)ds \nonumber \\ N_{10}= & {} \int _{0}^{L}[\phi _n'(s)\int _{s}^{L}(-\mu (s))\int _{s}^{0}\phi _m'(s)\phi _n'(s)ds \ ds]\phi _n(s)ds \nonumber \\ N_{11}= & {} \int _{0}^{L}[\phi _n'(s)\int _{s}^{L}(-\mu (s))\int _{s}^{0}\phi _n'(s)^2ds \ ds]\phi _n(s)ds \nonumber \\ N_{12}= & {} \int _{0}^{L}[\phi _m'(s)\int _{s}^{L}(-\mu (s))\int _{s}^{0}\phi _n'(s)^2ds \ ds]\phi _n(s)ds \nonumber \\ N_{13}= & {} \int _{0}^{L}[\phi _n'(s)\int _{s}^{L}(-\mu (s))\int _{s}^{0}\phi _m'(s)^2ds \ ds]\phi _n(s)ds \nonumber \\ N_{14}= & {} \int _{x_1}^{x_2}\int _{\frac{-b}{2}}^{\frac{b}{2}}\int _{y_1}^{y_2}s_{111}\eta ^3 \ d\eta d\zeta \phi _m''(s)^2\phi _n''(s) \ ds \nonumber \\ N_{15}= & {} \int _{x_1}^{x_2}\int _{\frac{-b}{2}}^{\frac{b}{2}}\int _{y_1}^{y_2}2s_{111}\eta ^3 \ d\eta d\zeta \phi _m''(s)\phi _n''(s)^2 \ ds \nonumber \\ N_{16}= & {} \int _{x_1}^{x_2}\int _{\frac{-b}{2}}^{\frac{b}{2}}\int _{y_1}^{y_2}s_{111}\eta ^3 \ d\eta d\zeta \phi _n''(s)^3 \ ds \nonumber \\ N_{17}= & {} \int _{x_1}^{x_2}\int _{\frac{-b}{2}}^{\frac{b}{2}}\int _{y_1}^{y_2}2\frac{d_{311}}{h_p}\eta ^2 \ d\eta d\zeta \phi _n''(s)^2 \ ds\end{aligned}$$
(149)
$$\begin{aligned} N_{18}= & {} \int _{x_1}^{x_2}\int _{\frac{-b}{2}}^{\frac{b}{2}}\int _{y_1}^{y_2}2\frac{d_{311}}{h_p}\eta ^2 \ d\eta d\zeta \phi _n''(s)\phi _m''(s) \ ds \nonumber \\ N_{19}= & {} \int _{x_1}^{x_2}\int _{\frac{-b}{2}}^{\frac{b}{2}}\int _{y_1}^{y_2}\frac{-d_{31}}{h_p}\eta \ d\eta d\zeta \phi _n''(s) \ ds \nonumber \\ N_{20}= & {} \int _{x_1}^{x_2}\int _{\frac{-b}{2}}^{\frac{b}{2}}\int _{y_1}^{y_2}\frac{r_{331}}{h_p^2}\eta \ d\eta d\zeta \phi _n''(s) \ ds \nonumber \\ M_0= & {} \int _{0}^{L}\mu (s)\phi _m^2(s)ds \nonumber \\ M_1= & {} c_w\int _{0}^{L}\phi _m^2(s)ds \nonumber \\ M_2= & {} F\int _{0}^{L}\mu (s)\phi _m(s)ds \nonumber \\ M_3= & {} \int _{0}^{L}(-EI(s))\phi _n^{(iv)}(s)\phi _m(s)ds \nonumber \\ M_4= & {} \int _{0}^{L}(-EI(s))[\phi _m'(s)\big (\phi _m'(s)\phi _m''(s)\big )']'\phi _m(s)ds \nonumber \\ M_5= & {} \int _{0}^{L}(-EI(s))[\phi _m'(s)\big (\phi _n'(s)\phi _n''(s)\big )'\nonumber \\&+\,\phi _n'(s)\big (\phi _m'(s)\phi _n''(s)\big )'\nonumber \\&+\,\phi _n'(s)\big (\phi _n'(s)\phi _m''(s)\big )']'\phi _m(s)ds \nonumber \\ M_6= & {} \int _{0}^{L}(-EI(s))[\phi _n'(s)\big (\phi _m'(s)\phi _m''(s)\big )'\nonumber \\&+\,\phi _m'(s)\big (\phi _m'(s)\phi _n''(s)\big )'\nonumber \\&+\,\phi _m'(s)\big (\phi _n'(s)\phi _m''(s)\big )']'\phi _m(s)ds \nonumber \\ M_7= & {} \int _{0}^{L}(-EI(s))[\phi _n'(s)\big (\phi _n'(s)\phi _n''(s)\big )']'\phi _m(s)ds \nonumber \\ M_8= & {} \int _{0}^{L}[\phi _m'(s)\int _{s}^{L}\frac{-\mu (s)}{2}\int _{s}^{0}\phi _m'(s)^2ds \ ds]\phi _m(s)ds \nonumber \\ M_9= & {} \int _{0}^{L}[\phi _m'(s)\int _{s}^{L}(-\mu (s))\int _{s}^{0}\phi _m'(s)\phi _n'(s)ds \ ds]\phi _m(s)ds \nonumber \\ M_{10}= & {} \int _{0}^{L}[\phi _n'(s)\int _{s}^{L}(-\mu (s))\int _{s}^{0}\phi _m'(s)\phi _n'(s)ds \ ds]\phi _m(s)ds \nonumber \\ M_{11}= & {} \int _{0}^{L}[\phi _n'(s)\int _{s}^{L}(-\mu (s))\int _{s}^{0}\phi _n'(s)^2ds \ ds]\phi _m(s)ds \nonumber \\ M_{12}= & {} \int _{0}^{L}[\phi _m'(s)\int _{s}^{L}(-\mu (s))\int _{s}^{0}\phi _n'(s)^2ds \ ds]\phi _m(s)ds \nonumber \\ M_{13}= & {} \int _{0}^{L}[\phi _n'(s)\int _{s}^{L}(-\mu (s))\int _{s}^{0}\phi _m'(s)^2ds \ ds]\phi _m(s)ds \nonumber \\ M_{14}= & {} \int _{x_1}^{x_2}\int _{\frac{-b}{2}}^{\frac{b}{2}}\int _{y_1}^{y_2}s_{111}\eta ^3 \ d\eta d\zeta \phi _m''(s)^3 \ ds\end{aligned}$$
(150)
$$\begin{aligned} M_{15}= & {} \int _{x_1}^{x_2}\int _{\frac{-b}{2}}^{\frac{b}{2}}\int _{y_1}^{y_2}2s_{111}\eta ^3 \ d\eta d\zeta \phi _m''(s)^2\phi _n''(s) \ ds \nonumber \\ M_{16}= & {} \int _{x_1}^{x_2}\int _{\frac{-b}{2}}^{\frac{b}{2}}\int _{y_1}^{y_2}s_{111}\eta ^3 \ d\eta d\zeta \phi _n''(s)^2\phi _m''(s) \ ds \nonumber \\ M_{17}= & {} \int _{x_1}^{x_2}\int _{\frac{-b}{2}}^{\frac{b}{2}}\int _{y_1}^{y_2}2\frac{d_{311}}{h_p}\eta ^2 \ d\eta d\zeta \phi _n''(s)\phi _m''(s) \ ds \nonumber \\ M_{18}= & {} \int _{x_1}^{x_2}\int _{\frac{-b}{2}}^{\frac{b}{2}}\int _{y_1}^{y_2}2\frac{d_{311}}{h_p}\eta ^2 \ d\eta d\zeta \phi _m''(s)^2 \ ds \nonumber \\ M_{19}= & {} \int _{x_1}^{x_2}\int _{\frac{-b}{2}}^{\frac{b}{2}}\int _{y_1}^{y_2}\frac{-d_{31}}{h_p}\eta \ d\eta d\zeta \phi _m''(s) \ ds \nonumber \\ M_{20}= & {} \int _{x_1}^{x_2}\int _{\frac{-b}{2}}^{\frac{b}{2}}\int _{y_1}^{y_2}\frac{r_{331}}{h_p^2}\eta \ d\eta d\zeta \phi _m''(s) \ ds \end{aligned}$$
(151)

To simplify, we suppose \(c_v= c_w\).

$$\begin{aligned} S_1= & {} \frac{1}{R} \nonumber \\ S_2= & {} \int _{x_1}^{x_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}(y_1-y_2)d_{31}\phi _m''(s) d\zeta \ ds \nonumber \\ S_3= & {} \int _{x_1}^{x_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}(y_1-y_2)d_{31}\phi _n''(s) d\zeta \ ds \nonumber \\ S_4= & {} \int _{x_1}^{x_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}\frac{2}{h_p}r_{331}\phi _m''(s) d\zeta \ ds \nonumber \\ S_5= & {} \int _{x_1}^{x_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}\frac{2}{h_p}r_{331}\phi _n''(s) d\zeta \ ds \nonumber \\ S_6= & {} \int _{x_1}^{x_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}d_{311}(y_2^2-y_1^2)\phi _m''(s)^2d\zeta \ ds \nonumber \\ S_7= & {} \int _{x_1}^{x_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}d_{311}(y_2^2-y_1^2)\phi _n''(s)^2d\zeta \ ds \nonumber \\ S_8= & {} \int _{x_1}^{x_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}\frac{\xi _{33}}{h_p}d\zeta \ ds \nonumber \\ S_9= & {} \int _{x_1}^{x_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}\frac{-2\xi _{333}}{h_p^2}d\zeta \ ds \nonumber \\ S_{10}= & {} \int _{x_1}^{x_2}\int _{-\frac{b}{2}}^{\frac{b}{2}}d_{311}(y_2^2-y_1^2)\phi _n''(s)\phi _m''(s)d\zeta \ ds\nonumber \\ \end{aligned}$$
(152)

Appendix 8

$$\begin{aligned} \varGamma _{2n}= & {} \frac{N_{16}+\varLambda _nN_{17}+\varLambda _n^2N_{20}}{-(2\omega _{vn})^2N_0-N_3} \nonumber \\ \varGamma _{2m}= & {} \frac{N_{14}+\varLambda _mN_{18}+\varLambda _m^2N_{20}}{-(2\omega _{vm})^2N_0-N_3} \nonumber \\ \varGamma _{mn}= & {} \frac{\varLambda _mN_{17}+\varLambda _nN_{18}+2\varLambda _n\varLambda _mN_{20}}{-(\omega _{vm}+\omega _{vn})^2N_0-N_3} \nonumber \\ \varGamma _{m\overline{n}}= & {} \frac{\varLambda _mN_{17}+\overline{\varLambda }_nN_{18}+2\varLambda _m\overline{\varLambda }_nN_{18}}{-(\omega _{vm}-\omega _{vn})^2R_0-R_3} \nonumber \\ \varGamma _{cn}= & {} \frac{2N_{16}+\varLambda _nN_{17}+\overline{\varLambda }_nN_{17}+2\varLambda _n\overline{\varLambda }_nN_{20}}{-2N_3} \nonumber \\ \varGamma _{cm}= & {} \frac{2N_{14}+\varLambda _mN_{18}+\overline{\varLambda }_mN_{18}+2\varLambda _m\overline{\varLambda }_mN_{20}}{-2N_3} \nonumber \\ \varUpsilon _{2n}= & {} \frac{M_{16}+\varLambda _nM{17}+\varLambda _n^2N_{20}}{-(2\omega _{vn})^2M_0-M_3} \nonumber \\ \varUpsilon _{2m}= & {} \frac{M_{14}+\varLambda _mM_{18}+\varLambda _m^2M_{20}}{-(2\omega _{vm})^2M_0-M_3} \nonumber \\ \varUpsilon _{mn}= & {} \frac{M_{15}+\varLambda _mM_{17}+\varLambda _nM_{18}+\varLambda _m\varLambda _nM_{20}}{-(\omega _{vm}-\omega _{vn}))^2M_0-M_3} \nonumber \\ \varUpsilon _{m\overline{n}}= & {} \frac{M_{15}+\varLambda _mM_{17}+\overline{\varLambda }_nM_{18}+2\varLambda _m\overline{\varLambda }_nM_{20}}{-(\omega _{vm}-\omega _{vn}))^2M_0-M_3} \nonumber \\ \varUpsilon _{cm}= & {} \frac{2M_{16}+\varLambda _nM_{17}+\overline{\varLambda }_mM_{17}+2\varLambda _n\overline{\varLambda }_nM_{20}}{-2M_3} \nonumber \\ \varUpsilon _{cn}= & {} \frac{2M_{14}+\varLambda _mM_{18}+\overline{\varLambda }_mM_{18}+2\varLambda _m\overline{\varLambda }_mM_{20}}{-2M_3}\nonumber \\ \end{aligned}$$
(153)

Appendix 9

$$\begin{aligned} \varLambda _{2m}= & {} \frac{(i\omega _{vm})(2\varUpsilon _{2m}S_2+2\varGamma _{2m}S_3+2\varLambda _mS_4+2\varLambda _mS_5+S_6+\varLambda _m^2S_9)}{S_1-2i\omega _{vm}S_8} \nonumber \\ \varLambda _{2n}= & {} \frac{(i\omega _{vn})(2\varUpsilon _{2n}S_2+2\varGamma _{2n}S_3+S_7+\varLambda _n^2S_9)}{S_1-2i\omega _{vn}S_8} \nonumber \\ \varLambda _{mn}= & {} \frac{(i\omega _{vn}+i\omega _{vm})(S_{10}+\varUpsilon _{mn}S_2+\varGamma _{mn}S_3+\varLambda _nS_4+\varLambda _nS_5+\varLambda _n\varLambda _mS_9)}{S_1-i(\omega _{vn}+\omega _{vm})S_8} \nonumber \\ \varLambda _{m\overline{n}}= & {} \frac{(-i\omega _{vn}+i\omega _{vm})(S_{10}+\varUpsilon _{m\overline{n}}S_2+\varGamma _{m\overline{n}}S_3+\overline{\varLambda }_nS_4+\overline{\varLambda }_nS_5+\overline{\varLambda }_n\varLambda _mS_9)}{S_1-i(-\omega _{vn}+\omega _{vm})S_8} \end{aligned}$$
(154)

Appendix 10

$$\begin{aligned} \varXi _0= & {} 2\omega _{vn}N_0 \nonumber \\ \varXi _1= & {} \frac{N_2\omega _{vn}^2}{2} \nonumber \\ \varXi _2= & {} \varUpsilon _{2n}N_{15}+(\varUpsilon _{cn}+\overline{\varUpsilon }_{cn})N_{15}+\varLambda _{2n}N_{17}\nonumber \\&+\overline{\varLambda }_n\varGamma _{2n}N_{17}+\varLambda _n(\varGamma _{cn}+\overline{\varGamma }_{cn})N_{17}-4\omega _{vn}^2N_{11} \nonumber \\&+3N_7+2\varLambda _{2n}\overline{\varLambda }_nN_{20}+\overline{\varLambda }_n\varUpsilon _{2n}N_{18}+\varLambda _n(\varUpsilon _{cn}\nonumber \\&+\overline{\varUpsilon }_{cn})N_{18}+2\varUpsilon _{2n}N_{16}+2(\varUpsilon _{cn}+\overline{\varUpsilon }_{cn})N_{16}\nonumber \\ \varXi _3= & {} 2(\varUpsilon _{mn}+\varUpsilon _{\overline{m}n})N_{14}+(\varLambda _{mb}+\varLambda _{\overline{m}n})N_{18}\nonumber \\&+\varLambda _n(\varUpsilon _{cm}+\overline{\varUpsilon }_{cm})N_{18}+\varLambda _m\varUpsilon _{\overline{m}n}N_{18}\nonumber \\&+\overline{\varLambda }_m\varUpsilon _{mn}N_{18}\nonumber \\&+2\varLambda _m\varLambda _{\overline{m}n}N_{20}+2\overline{\varLambda }_m\varLambda _{mn}N_{20}+2N_6+2(\varGamma _{cm}\nonumber \\&+\overline{\varGamma }_{cm})N_{16}+(\varUpsilon _{cm}+\overline{\varUpsilon }_{cm})N_{15}\nonumber \\&+(\varGamma _{mn}+\varGamma _{\overline{m}n})N_{15}+\varLambda _n(\varGamma _{cm}+\overline{\varGamma }_{cm})N_{17}\nonumber \\&+\varLambda _m\varGamma _{\overline{m}n}N_{17}+\overline{\varLambda }_m\varGamma _{mn}N_{17}-2(\omega _{vn}^2+\omega _{vm}^2)N_9 \nonumber \\ \varXi _4= & {} 2\overline{\varUpsilon }_{2n}N_{14}+\overline{\varLambda }_{2n}N_{18}+\varLambda _m\overline{\varUpsilon }_{2n}N_{18}\nonumber \\&+\overline{\varLambda }_n\varUpsilon {m\overline{n}}N_{18}+2\overline{\varLambda }_{2n}\varLambda _m\nonumber \\&+2\varLambda _{m\overline{n}}\overline{\varLambda }_nN_{20}+\varUpsilon _{m\overline{n}}N_{15} \nonumber \\&+\overline{\varGamma }_{2n}N_{15}+N_5+2N_{16}\varGamma _{m\overline{n}}+\varLambda _{m\overline{n}}N_{17}\nonumber \\&+\varLambda _m\overline{\varGamma }_{2n}N_{17}+\overline{\varLambda }_n\varGamma _{m\overline{n}}N_{17}\nonumber \\&-8\omega _{vn}^2N_{12}-(\omega _{vn}-\omega _{vm})^2N_{10} \nonumber \\ \varXi _5= & {} N_1\omega _{vn}\nonumber \\ \varTheta _1= & {} 2M_4-4\omega _{vm}^2M_8+2\varUpsilon _{2m}M_{14}+2(\varUpsilon _{cm}\nonumber \\&+\overline{\varUpsilon }_{cm})M_{14} +\varLambda _{2m}M_{18}\nonumber \\&+\overline{\varLambda }_mM_{18}+\varLambda _m(\varUpsilon _{cm}+\overline{\varUpsilon }_{cm})M_{18}+\varGamma _{2m}M_{15}\nonumber \\&+(\varGamma _{cm}+\overline{\varGamma }_{cm})M_{18}+\varGamma _{2m}M_{15}+(\varGamma _{cm}+\overline{\varGamma }_{cm})M_{15}\nonumber \\&+\overline{\varLambda }_m\varGamma _{2m}M_{17}+\varLambda _m(\varGamma _{cm}+\overline{\varGamma }_{cm})M_{17}\nonumber \\ \varTheta _2= & {} M_7-4\omega _{vn}^2M_{11}+2\varGamma _{2n}M_{16}+\varUpsilon _{2n}M_{15}+\varLambda _{2n}M_{17}\nonumber \\&+\varLambda _n\varGamma _{2n}M_{17}+\varLambda _n\varUpsilon _{2n}M_{18}\nonumber \\ \varTheta _3= & {} 2M_5-2M_{10}(\omega _{vn}^2+\omega _{vm}^2)+2M_{14}(\varUpsilon _{cn}+\overline{\varUpsilon }_{cn})\nonumber \\&+\varLambda _m(\varUpsilon _{cn}+\overline{\varUpsilon }_{cn})M_{18} \nonumber \\&+\varLambda _n\varUpsilon _{m\overline{n}}M_{18}+\overline{\varLambda }_n\varUpsilon _{mn}M_{18}+2(\varGamma _{mn}\nonumber \\&+\varGamma _{m\overline{n}})M_{16}+\varUpsilon _{mn}M_{15}+\varUpsilon _{m\overline{n}}M_{15}+(\varGamma _{cn}\nonumber \\&+\overline{\varGamma }_{cn})M_{15} \nonumber \\&+\varLambda _{mn}M_{17}+\varLambda _{m\overline{n}}M_{17}+\varLambda _m(\varGamma _{cn}+\overline{\varGamma }_{cn})M_{17}\nonumber \\&+\overline{\varLambda }_n\varGamma _{mn}M_{17}+\varLambda _n\varGamma {m\overline{n}}M_{17} \nonumber \\ \varTheta _4= & {} 2\omega _{vm}M_0 \nonumber \\ \varTheta _5= & {} \omega _{vm}M_1 \end{aligned}$$
(155)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillot, V., Ture Savadkoohi, A. & Lamarque, CH. Analysis of a reduced-order nonlinear model of a multi-physics beam. Nonlinear Dyn 97, 1371–1401 (2019). https://doi.org/10.1007/s11071-019-05054-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05054-x

Keywords

Navigation