Skip to main content

Advertisement

Log in

Tuning inter-modal energy exchanges of a nonlinear electromechanical beam by a nonlinear circuit

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A model of a nonlinear beam with a piezoelectric patch linked to a nonlinear circuit is considered. The physical and mechanical parameters of the system are such that it presents a 1:3 internal resonance. The aim is to study, for different time scales, the effect of the nonlinearity of the electrical circuit on energy exchanges between the resonant modes. In fact, we would like to master energy channelling between two internally resonant modes of a composite beam via a nonlinear circuit. The investigations are carried out on the projected system equations on its internally resonant modes. The system behaviours at different scales of time are studied by coupled methods of complexification and multiple scale. Analytical developments permit to reveal different system dynamics characterized by periodic and/or non-periodic regimes. Finally, the paper is accompanied by comparisons between systems equipped with a resonant circuit (linear) and a nonlinear one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Pai, P.F., Wen, B., Naser, A.S., Schulz, M.J.: Structural vibration control using PZT patches and non-linear phenomena. J. Sound Vib. 215(2), 273–296 (1998)

    Article  Google Scholar 

  2. Li, H., Preidikman, S., Balachandran, B., Mote, C.D.: Nonlinear free and forced oscillations of piezoelectric microresonators. J. Micromech. Microeng. 16(2), 356–367 (2006)

    Article  Google Scholar 

  3. Mam, K., Peigney, M., Siegert, D.: Finite strain effects in piezoelectric energy harvesters under direct and parametric excitations. J. Sound Vib. 389, 411–437 (2017)

    Article  Google Scholar 

  4. Pai, P.F., Nayfeh, A.H.: Three-dimensional nonlinear vibrations of composite beams—II. Flapwise excitations. Nonlinear Dyn. 2, 1–34 (1991)

    Article  Google Scholar 

  5. Pai, P.F., Nayfeh, A.H.: Three-dimensional nonlinear vibrations of composite beams—III. Chordwise excitations. Nonlinear Dyn. 2, 137–156 (1991)

    Article  Google Scholar 

  6. Nayfeh, A., Balachandran, B.: Modal interactions in dynamical and structural systems. Appl. Mech. Rev. 42, 11 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zaretzky, C.L., Crespo da Silva, M.R.M.: Experimental investigation of non-linear modal coupling in the response of cantilever beams. J. Sound Vib. 174(2), 145–167 (1994)

    Article  Google Scholar 

  8. Cho, H., Jeong, B., Yu, M.-F., Vakakis, A.F., Michael McFarland, D., Bergman, L.A.: Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities. Int. J. Solids Struct. 49(15), 2059–2065 (2012)

    Article  Google Scholar 

  9. Shaw, A.D., Hill, T.L., Neild, S.A., Friswell, M.I.: Periodic responses of a structure with 3:1 internal resonance. Mech. Syst. Signal Process. 81, 19–34 (2016)

    Article  Google Scholar 

  10. Crespo Da Silva, M.R.M.: Non-linear flexural-flexural-torsional-extensional dynamics of beams—I. Formulation. Int. J. Solids Struct. 24(12), 1225–1234 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Crespo Da Silva, M.R.M.: Non-linear flexural-flexural-torsional-extensional dynamics of beams—II. Response analysis. Int. J. Solids Struct. 24, 1235–1242 (1988)

    Article  MATH  Google Scholar 

  12. Pai, P.F., Nayfeh, A.H.: Three-dimensional nonlinear vibrations of composite beams—I. Equations of motion. Nonlinear Dyn. 1, 477–502 (1990)

    Article  Google Scholar 

  13. Guillot, V., Savadkoohi, A.T., Lamarque, C.-H.: Analysis of a reduced order nonlinear model of a multi-physics beam. Nonlinear Dyn. 97(2), 1371–1401 (2019)

    Article  MATH  Google Scholar 

  14. Guillot, V., Givois, A., Mathieu, C., Olivier, T., Ture Savadkoohi, A., Lamarque, C.-H.: Theoretical and experimental investigation of a 1:3 internal resonance in a beam with piezoelectric patches. J. Vib. Control 26(13–14), 107754632091053 (2020)

    MathSciNet  Google Scholar 

  15. Andreaus, U., Dell’Isola, F., Porfiri, M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10(5), 625–659 (2004)

  16. Hagood, N.W., von Flotow, A.: Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146(2), 243–268 (1991)

    Article  Google Scholar 

  17. Liao, Y., Sodano, H.: Piezoelectric damping of resistively shunted beams and optimal parameters for maximum damping. J. Vib. Acoust. 132, 08 (2010)

    Article  Google Scholar 

  18. Yamada, K., Matsuhisa, H., Utsuno, H., Sawada, K.: Optimum tuning of series and parallel LR circuits for passive vibration suppression using piezoelectric elements. J. Sound Vib. 329(24), 5036–5057 (2010)

    Article  Google Scholar 

  19. Richard, C., Guyomar, D., Audigier, D., Ching, G.: Semi-passive damping using continuous switching of a piezoelectric device. In: Proceedings of SPIE, vol. 3672, pp. 104–111. The International Society for Optical Engineering (1999)

  20. Richard, C., Guyomar, D., Audigier, D., Bassaler, H.: Enhanced semi-passive damping using continuous switching of a piezoelectric device on an inductor. In: Smart Structures and Materials: Passive Damping and Isolation, vol. 3989, pp. 288–299. SPIE (2000)

  21. Badel, A., Sebald, G., Guyomar, D., Lallart, M., Lefeuvre, E., Richard, C., Qiu, J.: Piezoelectric vibration control by synchronized switching on adaptive voltage sources: towards wide band semi-active damping. J. Acoust. Soc. Am. 119, 2815–2825 (2006)

    Article  Google Scholar 

  22. Lefeuvre, E., Badel, A., Petit, L., Richard, C., Guyomar, D.: Semi-passive piezoelectric structural damping by synchronized switching on voltage sources. J. Intell. Mater. Syst. Struct. 17, 653–660 (2006)

    Article  Google Scholar 

  23. Lossouarn, B., Deü, J.-F., Kerschen, G.: A fully passive nonlinear piezoelectric vibration absorber. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170142 (2018)

    Article  MATH  Google Scholar 

  24. Silva, T., Clementino, M., De Marqui, C., Jr., Erturk, A.: An experimentally validated piezoelectric nonlinear energy sink for wideband vibration attenuation. J. Sound Vib. 437, 68–78 (2018)

    Article  Google Scholar 

  25. Hollkamp, J.J., Starchville, T.F., Jr.: A self-tuning piezoelectric vibration absorber. J. Intell. Mater. Syst. Struct. 5(4), 559–566 (1994)

    Article  Google Scholar 

  26. Behrens, S., Moheimani, S.O.R., Fleming, A.J.: Multiple mode current flowing passive piezoelectric shunt controller. J. Sound Vib. 266(5), 929–942 (2003)

    Article  Google Scholar 

  27. Roberson, R.E.: Synthesis of a nonlinear dynamic vibration absorber. J. Frankl. Inst. 254(3), 205–220 (1952)

    Article  MathSciNet  Google Scholar 

  28. Sevin, E.: On the parametric excitation of pendulum-type vibration absorber. J. Appl. Mech. 28(3), 330–334 (1961)

    Article  MATH  Google Scholar 

  29. Carter, W.J., Liu, F.C.: Steady-state behavior of nonlinear dynamic vibration absorber. J. Appl. Mech. 28(1), 67–70 (1961)

    Article  MATH  Google Scholar 

  30. Struble, R.A., Heinbockel, J.H.: Resonant oscillations of a beam-pendulum system. J. Appl. Mech. 30(2), 181–188 (1963)

    Article  MATH  Google Scholar 

  31. Haxton, R.S., Barr, A.D.S.: The autoparametric vibration absorber. J. Eng. Ind. 94(1), 119–125 (1972)

    Article  Google Scholar 

  32. Hunt, J.B., Nissen, J.-C.: The broadband dynamic vibration absorber. J. Sound Vib. 83(4), 573–578 (1982)

    Article  Google Scholar 

  33. Kojima, H., Saito, H.: Forced vibrations of a beam with a non-linear dynamic vibration absorber. J. Sound Vib. 88(4), 559–568 (1983)

    Article  MATH  Google Scholar 

  34. Collette, F.S.: A combined tuned absorber and pendulum impact damper under random excitation. J. Sound Vib. 216(2), 199–213 (1998)

    Article  Google Scholar 

  35. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. J. Appl. Mech. Trans. ASME 68, 01 (2001)

    Article  MATH  Google Scholar 

  36. Gendelman, O.V., Gourdon, E., Lamarque, C.H.: Quasiperiodic energy pumping in coupled oscillators under periodic forcing. J. Sound Vib. 294(4), 651–662 (2006)

    Article  Google Scholar 

  37. Guillot, V., Ture Savadkoohi, A., Lamarque, C.-H.: Study of an electromechanical nonlinear vibration absorber design via analytical approach. J. Intell. Mater. Syst. Struct. 32, 410–419 (2021)

    Article  Google Scholar 

  38. Thomas, O., Deü, J.-F., Ducarne, J.: Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and electromechanical coupling coefficients. Int. J. Numer. Methods Eng. 80(2), 235–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Guyomar, D., Aurelle, N., Eyraud, L.: Piezoelectric ceramics nonlinear behavior application to Langevin transducer. J. Phys. III(7), 1197–1208 (1997)

    Google Scholar 

  40. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67, 1147–1160 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Guillot, V.: Conception multi-échelle de structures électro-mécaniques non linéaires pour le contrôle et la maîtrise des transferts d’énergie. Ph.D. thesis, NNT: 2020LYSET018, Université de Lyon, December 2020

  42. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-VCH, Weinheim (1995)

    Book  MATH  Google Scholar 

  43. Manevitch, L.I.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25(1), 95–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Bitar, D., Ture Savadkoohi, A., Lamarque, C.-H., Gourdon, E., Collet, M.: Extended complexification method to study nonlinear passive control. Nonlinear Dyn. 99, 11 (2019)

    MATH  Google Scholar 

  45. Georgiou, I.T., Bajaj, A.K., Corless, M.: Slow and fast invariant manifolds, and normal modes in a two degree-of-freedom structural dynamical system with multiple equilibrium states. Int. J. Non-Linear Mech. 33(2), 275–300 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ginoux, J.-M., Rossetto, B., Chua, L.O.: Slow invariant manifolds as curvature of the flow of dynamical systems. Int. J. Bifurc. Chaos 18(11), 3409–3430 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Manevitch, L.I., Gendelman, O.: Tractable Models of Solid Mechanics. Formulation, Analysis and Interpretation. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  48. Ginoux, J.-M.: Slow invariant manifolds of slow-fast dynamical systems. Int. J. Bifurc. Chaos 31(07), 2150112 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Charlemagne, S., Ture Savadkoohi, A., Lamarque, C.H.: Interactions between two coupled nonlinear forced systems: fast/slow dynamics. Int. J. Bifurc. Chaos 26, 1650155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  51. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry. Physica D 237(13), 1719–1733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following organizations for supporting this research: (i) The “Ministére de la Transition écologique” and (ii) LABEX CELYA (ANR-10-LABX-0060) of the “Université de Lyon” within the program “Investissement d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ture Savadkoohi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Definition of the parameters of Eq. 4

The parameters of Eq. 4 are as follows:

$$\begin{aligned} \mu _n= & {} \displaystyle {\int _{0}^{L_b}c_v\phi _n^2 \ \mathrm{d}s } \\ \omega _n^2= & {} \displaystyle {\int _{0}^{L_b}EI\phi _n^{(iv)}(s)\phi _n\ \mathrm{d}s}\\ F_n= & {} \displaystyle {\int _{0}^{L_b}\mu F\phi _n\ \mathrm{d}s }\\ De_{nnn}= & {} \displaystyle {\int _{0}^{L_b}(-EI)(\phi _n'(\phi _n'\phi _n'')')' \ \phi _n\ \mathrm{d}s}\\ De_{nnm}= & {} \displaystyle {\int _{0}^{L_b}(-EI)(\phi _n'(\phi _m'\phi _n'')'+\phi _n'(\phi _m'\phi _n'')'+\phi _n'(\phi _n'\phi _m'')')' \ \phi _n\ \mathrm{d}s} \end{aligned}$$
$$\begin{aligned} De_{nmm}= & {} \displaystyle {\int _{0}^{L_b}(-EI)(\phi _m'(\phi _m'\phi _n'')'+\phi _n'(\phi _m'\phi _m'')'+\phi _m'(\phi _n'\phi _m'')')' \ \phi _n\ \mathrm{d}s}\nonumber \\ De_{mmm}= & {} \displaystyle {\int _{0}^{L_b}(-EI)(\phi _m'(\phi _m'\phi _m'')')' \ \phi _n\ \mathrm{d}s}\nonumber \\ G_{nnn}= & {} \displaystyle {\int _{0}^{L_b} \left( \phi _n'\int _{s}^{L_b}\frac{-\mu }{2}\int _{s}^{0}\phi _n'^2\ \mathrm{d}s \ \mathrm{d}s\right) '\ \phi _n \ \mathrm{d}s}\nonumber \\ G_{nnm}= & {} \displaystyle {\int _{0}^{L_b} \left( \phi _n'\int _{s}^{L_b}\frac{-\mu }{2}\int _{s}^{0}\phi _n'\phi _m'\ \mathrm{d}s \ \mathrm{d}s\right) '\ \phi _n \ \mathrm{d}s}\nonumber \\ G_{nmm}= & {} \displaystyle {\int _{0}^{L_b} \left( \phi _n'\int _{s}^{L_b}\frac{-\mu }{2}\int _{s}^{0}\phi _m'^2\ \mathrm{d}s \ \mathrm{d}s\right) '\ \phi _n \ \mathrm{d}s}\nonumber \\ G_{mnn}= & {} \displaystyle {\int _{0}^{L_b} \left( \phi _m'\int _{s}^{L_b}\frac{-\mu }{2}\int _{s}^{0}\phi _n'^2\ \mathrm{d}s \ \mathrm{d}s\right) '\ \phi _n \ \mathrm{d}s}\nonumber \\ G_{mnm}= & {} \displaystyle {\int _{0}^{L_b} \left( \phi _m'\int _{s}^{L_b}\frac{-\mu }{2}\int _{s}^{0}\phi _n'\phi _m'\ \mathrm{d}s \ \mathrm{d}s\right) '\ \phi _n \ \mathrm{d}s}\nonumber \\ G_{mmm}= & {} \displaystyle {\int _{0}^{L_b} \left( \phi _m'\int _{s}^{L_b}\frac{-\mu }{2}\int _{s}^{0}\phi _m'^2\ \mathrm{d}s \ \mathrm{d}s\right) '\ \phi _n \ \mathrm{d}s}\nonumber \\ De_V= & {} \displaystyle {-\frac{b_pd_{31}(y_2^2-y_1^2)}{2h_p}\int _{x_1}^{x_2}\phi _n''\ \mathrm{d}s} \end{aligned}$$
(46)
$$\begin{aligned} \mu _m= & {} \displaystyle {\int _{0}^{L_b}c_v\phi _m^2 \ \mathrm{d}s } \nonumber \\ \omega _m^2= & {} \displaystyle {\int _{0}^{L_b}EI\phi _m^{(iv)}(s)\phi _m\ \mathrm{d}s}\nonumber \\ F_m= & {} \displaystyle {\int _{0}^{L_b}\mu F\phi _m\ \mathrm{d}s }\nonumber \\ Ae_{nnn}= & {} \displaystyle {\int _{0}^{L_b}(-EI)(\phi _n'(\phi _n'\phi _n'')')' \ \phi _m\ \mathrm{d}s}\nonumber \\ Ae_{nnm}= & {} \displaystyle {\int _{0}^{L_b}(-EI)(\phi _n'(\phi _m'\phi _n'')'+\phi _n'(\phi _m'\phi _n'')'+\phi _n'(\phi _n'\phi _m'')')' \ \phi _m\ \mathrm{d}s}\nonumber \\ Ae_{nnm}= & {} \displaystyle {\int _{0}^{L_b}(-EI)(\phi _m'(\phi _m'\phi _n'')'+\phi _n'(\phi _m'\phi _m'')'+\phi _m'(\phi _n'\phi _m'')')' \ \phi _m\ \mathrm{d}s}\nonumber \\ Ae_{mmm}= & {} \displaystyle {\int _{0}^{L_b}(-EI)(\phi _m'(\phi _m'\phi _m'')')' \ \phi _m\ \mathrm{d}s}\nonumber \\ Ga_{nnn}= & {} \displaystyle {\int _{0}^{L_b} \left( \phi _n'\int _{s}^{L_b}\frac{-\mu }{2}\int _{s}^{0}\phi _n'^2\ \mathrm{d}s \ \mathrm{d}s\right) '\ \phi _m \ \mathrm{d}s}\nonumber \\ Ga_{nnm}= & {} \displaystyle {\int _{0}^{L_b} \left( \phi _n'\int _{s}^{L_b}\frac{-\mu }{2}\int _{s}^{0}\phi _n'\phi _m'\ \mathrm{d}s \ \mathrm{d}s\right) '\ \phi _m \ \mathrm{d}s}\nonumber \\ Ga_{nmm}= & {} \displaystyle {\int _{0}^{L_b} \left( \phi _n'\int _{s}^{L_b}\frac{-\mu }{2}\int _{s}^{0}\phi _m'^2\ \mathrm{d}s \ \mathrm{d}s\right) '\ \phi _m \ \mathrm{d}s}\nonumber \\ Ga_{mnn}= & {} \displaystyle {\int _{0}^{L_b} \left( \phi _m'\int _{s}^{L_b}\frac{-\mu }{2}\int _{s}^{0}\phi _n'^2\ \mathrm{d}s \ \mathrm{d}s\right) '\ \phi _m \ \mathrm{d}s}\nonumber \\ Ga_{mnm}= & {} \displaystyle {\int _{0}^{L_b} \left( \phi _m'\int _{s}^{L_b}\frac{-\mu }{2}\int _{s}^{0}\phi _n'\phi _m'\ \mathrm{d}s \ \mathrm{d}s\right) '\ \phi _m \ \mathrm{d}s}\nonumber \\ Ga_{mmm}= & {} \displaystyle {\int _{0}^{L_b} \left( \phi _m'\int _{s}^{L_b}\frac{-\mu }{2}\int _{s}^{0}\phi _m'^2\ \mathrm{d}s \ \mathrm{d}s\right) '\ \phi _m \ \mathrm{d}s}\nonumber \\ Ae_V= & {} \displaystyle {-\frac{b_pd_{31}(y_2^2-y_1^2)}{2h_p}\int _{x_1}^{x_2}\phi _m''\mathrm{d}s} \end{aligned}$$
(47)

The parameters of Eq. 9 are defined as:

$$\begin{aligned} \begin{array}{rlrll} a_1&{}=\displaystyle {\frac{\mu _n}{\omega _n}}, &{} \nu &{}=\displaystyle {\frac{\varOmega }{\omega _n}}, \\ \\ \varLambda _{nnn}&{}=\displaystyle {\frac{De_{nnn}}{\omega _n^2}},&{} \varLambda _{nnm}&{}=\displaystyle {\frac{De_{nnm}}{\omega _n^2}}, \\ \varLambda _{nmm}&{}=\displaystyle {\frac{De_{nmm}}{\omega _n^2}},&{} \varLambda _{mmm}&{}=\displaystyle {\frac{De_{mmm}}{\omega _n^2}}, \\ L_{nnn}&{}=\displaystyle {G_{nnn}}, &{} L_{nnm}&{}=\displaystyle {G_{nnm}}, \\ L_{nmm}&{}=\displaystyle {G_{nmm}}, &{} L_{mnn}&{}=\displaystyle {G_{mnn}}, \\ L_{mnm}&{}=\displaystyle {G_{mnm}}, &{} L_{mmm}&{}=\displaystyle {G_{mmm}}, \\ \gamma _V&{}=\displaystyle {\frac{De_V}{L_V\omega _n^2}}, \\ \gamma _n&{}=-\displaystyle {\frac{De_VL_n}{L_V\omega _n^2}}, &{} \gamma _m&{}=-\displaystyle {\frac{De_VL_m}{L_V\omega _n^2}} \end{array} \end{aligned}$$
(48)
$$\begin{aligned} \begin{array}{rlrll} a_2&{}{}=\displaystyle {\frac{\mu _m}{\omega _m}}, &{}{} \varGamma _{nnn}&{}{}=\displaystyle {\frac{Ae_{nnn}}{\omega _n^2}}, \\ \\ \varGamma _{nnm}&{}{}=\displaystyle {\frac{Ae_{nnm}}{\omega _n^2}},&{}{} \varGamma _{nmm}&{}{}=\displaystyle {\frac{Ae_{nmm}}{\omega _n^2}}, \\ \\ T_{nnn}&{}{}=\displaystyle {Ga_{nnn}}, &{}{} T_{nnm}&{}{}=\displaystyle {Ga_{nnm}}, \\ \\ T_{nmm}&{}{}=\displaystyle {Ga_{nmm}}, &{}{} T_{mnn}&{}{}=\displaystyle {Ga_{mnn}}, \\ \\ T_{mnm}&{}{}=\displaystyle {Ga_{mnm}}, &{}{} T_{mmm}&{}{}=\displaystyle {Ga_{mmm}}, \\ \\ \varGamma _{mmm}&{}{}=\displaystyle {\frac{Ae_{mmm}}{\omega _n^2}}, \\ \\ \beta _V&{}{}=\displaystyle {\frac{De_V}{L_V\omega _n^2}},&{}{} \beta _n&{}{}=-\displaystyle {\frac{De_VL_n}{L_V\omega _n^2}}, \\ \\ \beta _m&{}{}=-\displaystyle {\frac{De_VL_m}{L_V\omega _n^2}}, &{}{} a_3&{}{}=\displaystyle {\frac{R}{L_0\omega _n}},\\ \\ \gamma &{}{}=\displaystyle {\frac{1}{C_{NL}L_0\omega _n^2}}, &{}{} \varTheta _V&{}{}=\displaystyle {\frac{1}{L_VL_0\omega _n^2}}-\displaystyle {\frac{1}{C_{neg}L_0\omega _n^2}}, \\ \\ \varTheta _n&{}{}=-\displaystyle {\frac{L_n}{L_VL_0\omega _n^2}}, &{}{} \varTheta _m&{}{}=-\displaystyle {\frac{L_m}{L_VL_0\omega _n^2}} \end{array} \end{aligned}$$
(49)

It is noted that \(\displaystyle {\zeta =1-\frac{L_V}{C_{neg}}}\) as \(\varTheta _V=\displaystyle {\frac{\zeta }{L_VL_0\omega _n^2}}\).

Definition of the matrix \(\varvec{A}\) from Eq. 39

$$\begin{aligned} \begin{array}{ll} \varvec{A}= \left( \begin{array}{ll} \displaystyle {\frac{\partial \mathcal {F}(\phi ,\overline{\phi },\psi ,\overline{\psi })}{\partial \phi }} &{} \displaystyle {\frac{\partial \mathcal {F}(\phi ,\overline{\phi },\psi ,\overline{\psi })}{\partial \overline{\phi }}} \\ \\ \displaystyle {\frac{\partial \mathcal {\overline{F}}(\phi ,\overline{\phi },\psi ,\overline{\psi })}{\partial \phi }} &{} \displaystyle {\frac{\partial \mathcal {\overline{F}}(\phi ,\overline{\phi },\psi ,\overline{\psi })}{\partial \overline{\phi }}} \end{array} \right) \end{array} \end{aligned}$$
(50)

Definition of the matrices \(M_j\) with \(j=1,\ldots ,5\) from Eq. 41

$$\begin{aligned} \begin{array}{ll} \varvec{M_1}= \left( \begin{array}{ll} \displaystyle {\frac{\partial \mathcal {G}}{\partial \phi }} &{} \displaystyle {\frac{\partial \mathcal {G}}{\partial \overline{\phi }}} \\ \\ \displaystyle {\frac{\partial \mathcal {\overline{G}}}{\partial \phi }} &{} \displaystyle {\frac{\partial \mathcal {\overline{G}}}{\partial \overline{\phi }}} \end{array} \right) \end{array} \end{aligned}$$
(51)
$$\begin{aligned} \begin{array}{ll} \varvec{M_2}= \left( \begin{array}{ll} \displaystyle {\frac{\partial \mathcal {G}}{\partial \phi _3}} &{} \displaystyle {\frac{\partial \mathcal {G}}{\partial \overline{\phi }_3}} \\ \\ \displaystyle {\frac{\partial \mathcal {\overline{G}}}{\partial \phi _3}} &{} \displaystyle {\frac{\partial \mathcal {\overline{G}}}{\partial \overline{\phi }_3}} \end{array} \right) \end{array} \end{aligned}$$
(52)
$$\begin{aligned} \begin{array}{ll} \varvec{M_3}= \left( \begin{array}{ll} \displaystyle {\frac{\partial \mathcal {G}}{\partial \psi }} &{} \displaystyle {\frac{\partial \mathcal {G}}{\partial \overline{\psi }}} \\ \\ \displaystyle {\frac{\partial \mathcal {\overline{G}}}{\partial \psi }} &{} \displaystyle {\frac{\partial \mathcal {\overline{G}}}{\partial \overline{\psi }}} \end{array} \right) \end{array} \end{aligned}$$
(53)
$$\begin{aligned} \begin{array}{ll} \varvec{M_4}= \left( \begin{array}{ll} \displaystyle {\frac{\partial \mathcal {H}}{\partial \phi }} &{} \displaystyle {\frac{\partial \mathcal {H}}{\partial \overline{\phi }}} \\ \\ \displaystyle {\frac{\partial \mathcal {\overline{H}}}{\partial \phi }} &{} \displaystyle {\frac{\partial \mathcal {\overline{H}}}{\partial \overline{\phi }}} \end{array} \right) \end{array} \end{aligned}$$
(54)
$$\begin{aligned} \begin{array}{ll} \varvec{M_5}= \left( \begin{array}{ll} \displaystyle {\frac{\partial \mathcal {H}}{\partial \phi _3}} &{} \displaystyle {\frac{\partial \mathcal {H}}{\partial \overline{\phi }_3}} \\ \\ \displaystyle {\frac{\partial \mathcal {\overline{H}}}{\partial \phi _3}} &{} \displaystyle {\frac{\partial \mathcal {\overline{H}}}{\partial \overline{\phi }_3}} \end{array} \right) \end{array} \end{aligned}$$
(55)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillot, V., Ture Savadkoohi, A. & Lamarque, CH. Tuning inter-modal energy exchanges of a nonlinear electromechanical beam by a nonlinear circuit. Arch Appl Mech 92, 2317–2349 (2022). https://doi.org/10.1007/s00419-022-02179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02179-1

Keywords

Navigation