Skip to main content
Log in

Differential evolution-based parameter estimation and synchronization of heterogeneous uncertain nonlinear delayed fractional-order multi-agent systems with unknown leader

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, under a fixed directed graph, the distributed cooperative synchronization of heterogeneous uncertain nonlinear chaotic delayed fractional-order multi-agent systems (FOMASs) with a leader of bounded unknown input is investigated, where the fractional orders and system parameters are uncertain and the controller gains are heterogeneous due to imperfect implementation. It should be noted that the study is more general by considering the FOMASs with time delays, unknown leader, heterogeneity, and unknown nonlinear dynamics. Firstly, a differential evolution-based parameter estimation method is proposed to identify the uncertain parameters. Then based on the identified parameters, by using the matrix theory, graph theory, fractional derivative inequality, and comparison principle of linear fractional equation with delay, a heterogeneous discontinuous controller is designed to achieve the distributed cooperative synchronization asymptotically. Thirdly, a heterogeneous continuous controller is further constructed to suppress the undesirable chattering behavior, where uniformly ultimately bounded synchronization tracking errors can be achieved and tuned as small as desired. Finally, numerical simulations are provided to validate the effectiveness of the proposed parameter estimation scheme and the designed control algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, P., Xu, S., Chen, W., Wei, Y., Zhang, Z.: A connectivity preserving rendezvous for unicycle agents with heterogeneous input disturbances. J. Frank. Inst. 355(10), 4248–4267 (2018)

    Article  MATH  Google Scholar 

  2. Peng, Z., Wen, G., Yang, S., Rahmani, A.: Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network. Nonlinear Dyn. 86(1), 605–622 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yazdani, S., Haeri, M.: Robust adaptive fault-tolerant control for leader-follower flocking of uncertain multi-agent systems with actuator failure. ISA Trans. 71, 227–234 (2017)

    Article  Google Scholar 

  4. Jiang, W., Wen, G., Peng, Z., Huang, T., Rahmani, R.A.: Fully distributed formation-containment control of heterogeneous linear multi-agent systems. IEEE Trans. Autom. Control (2018). https://doi.org/10.1109/TAC.2018.2887409

    Google Scholar 

  5. Jain, A., Ghose, D.: Synchronization of multi-agent systems with heterogeneous controllers. Nonlinear Dyn. 89(2), 1433–1451 (2017)

    Article  MATH  Google Scholar 

  6. Jain, A., Ghose, D.: Stabilization of collective formations with speed and controller gain heterogeneity and saturation. J. Frank. Inst. 354(14), 5964–5995 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guo, S., Mo, L., Yu, Y.: Mean-square consensus of heterogeneous multi-agent systems with communication noises. J. Frank. Inst. 355(8), 3717–3736 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, F., Wen, G., Peng, Z., Huang, T., Yu, Y.: Event-triggered consensus of general linear multiagent systems with data sampling and random packet losses. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2896772

    Google Scholar 

  9. Li, Z., Wen, G., Duan, Z., Ren, W.: Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Trans. Autom. Control 60(4), 1152–1157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Industr. Inform. 9(1), 427–438 (2013)

    Article  Google Scholar 

  11. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  12. Cao, Y., Ren, W.: Distributed formation control for fractional-order systems: dynamic interaction and absolute/relative damping. Syst. Control Lett. 59(3–4), 233–240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao, Y., Li, Y., Ren, W., Chen, Y.: Distributed coordination of networked fractional-order systems. IEEE Trans. Syst. Man Cybern. B Cybern. 40(2), 362–370 (2010)

    Article  Google Scholar 

  14. Yu, Z., Jiang, H., Hu, C., Yu, J.: Necessary and sufficient conditions for consensus of fractional-order multiagent systems via sampled-data control. IEEE Trans. Cybern. 47(8), 1892–1901 (2017)

    Article  Google Scholar 

  15. Chen, Y., Wen, G., Peng, Z., Rahmani, A.: Consensus of fractional-order multiagent system via sampled-data event-triggered control. J. Frank. Inst. (2018). https://doi.org/10.1016/j.jfranklin.2018.01.043

    Google Scholar 

  16. Gong, Y., Wen, G., Peng, Z., Huang, T., Chen, Y.: Observer-based time-varying formation control of fractional-order multi-agent systems with general linear dynamics. IEEE Trans. Circ. Syst. II Exp. Briefs (2019). https://doi.org/10.1109/TCSII.2019.2899063

    Google Scholar 

  17. Wang, H., Yu, Y., Wen, G., Zhang, S., Yu, J.: Global stability analysis of fractional-order Hopfield neural networks with time delay. Neurocomputing 154, 15–23 (2015)

    Article  Google Scholar 

  18. Rakkiyappan, R., Cao, J., Velmurugan, G.: Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 84–97 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaslik, E., Sivasundaram, S.: Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 32, 245–256 (2012)

    Article  MATH  Google Scholar 

  20. Huang, X., Zhao, Z., Wang, Z., Li, Y.: Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94, 13–21 (2012)

    Article  Google Scholar 

  21. Fan, Y., Huang, X., Wang, Z., Li, Y.: Nonlinear dynamics and chaos in a simplified memristor-based fractional-order neural network with discontinuous memductance function. Nonlinear Dyn. 93(2), 611–627 (2018)

    Article  MATH  Google Scholar 

  22. Cao, J., Li, H.X., Ho, D.W.: Synchronization criteria of Lur’e systems with time-delay feedback control. Chaos Solitons Fractals 23(4), 1285–1298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bao, H., Park, J.H., Cao, J.: Adaptive synchronization of fractional-order memristor-based neural networks with time delay. Nonlinear Dyn. 82(3), 1343–1354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, L., Wu, R., Cao, J., Liu, J.B.: Stability and synchronization of memristor-based fractional-order delayed neural networks. Neural Netw. 71, 37–44 (2015)

    Article  MATH  Google Scholar 

  25. Zhang, L., Yang, Y.: Lag synchronization for fractional-order memristive neural networks with time delay via switching jumps mismatch. J. Frank. Inst. 355(3), 1217–1240 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, J., Chen, B., Zeng, Z.: Global asymptotic stability and adaptive ultimate Mittag-Leffler synchronization for a fractional-order complex-valued memristive neural networks with delays. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–17 (2018)

    Google Scholar 

  27. Liu, P., Zeng, Z., Wang, J.: Global synchronization of coupled fractional-order recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. (2018). https://doi.org/10.1109/TNNLS.2018.2884620

    Google Scholar 

  28. Lakshmanan, S., Prakash, M., Lim, C.P., Rakkiyappan, R., Balasubramaniam, P., Nahavandi, S.: Synchronization of an inertial neural network with time-varying delays and its application to secure communication. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 195–207 (2018)

    Article  MathSciNet  Google Scholar 

  29. Zhou, L., Tan, F.: A chaotic secure communication scheme based on synchronization of double-layered and multiple complex networks. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-04828-7

    Google Scholar 

  30. Li, Z., Duan, Z., Chen, G., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circ. Syst. I: Regul. Pap. 57(1), 213–224 (2010)

    MathSciNet  Google Scholar 

  31. Wen, G., Yu, W., Zhao, Y., Cao, J.: Pinning synchronisation in fixed and switching directed networks of Lorenz-type nodes. IET Control Theory Appl. 7(10), 1387–1397 (2013)

    Article  MathSciNet  Google Scholar 

  32. Ma, T., Lewis, F.L., Song, Y.: Exponential synchronization of nonlinear multi-agent systems with time delays and impulsive disturbances. Int. J. Robust Nonlinear Control 26(8), 1615–1631 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cui, B., Zhao, C., Ma, T., Feng, C.: Leaderless and leader-following consensus of multi-agent chaotic systems with unknown time delays and switching topologies. Nonlinear Anal. Hybrid Syst. 24, 115–131 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen, J., Cao, J.: Necessary and sufficient conditions for consensus of delayed fractional-order systems. Asian J. Control 14(6), 1690–1697 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, H.Y., Zhu, X.L., Cao, K.C.: Distributed coordination of fractional order multi-agent systems with communication delays. Fract. Calc. Appl. Anal. 17(1), 23–37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhu, W., Chen, B., Yang, J.: Consensus of fractional-order multi-agent systems with input time delay. Fract. Calc. Appl. Anal. 20(1), 52–70 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hu, W., Wen, G., Rahmani, A., Yu, Y.: Distributed consensus tracking of unknown nonlinear chaotic delayed fractional-order multi-agent systems with external disturbances based on ABC algorithm. Commun. Nonlinear Sci. Numer. Simul. 71, 101–117 (2019)

    Article  MathSciNet  Google Scholar 

  38. Yuan, C., He, H.: Cooperative output regulation of heterogeneous multi-agent systems with a leader of bounded inputs. IET Control Theory Appl. 12(2), 233–242 (2017)

    MathSciNet  Google Scholar 

  39. Yu, J., Dong, X., Li, Q., Ren, Z.: Time-varying formation tracking for high-order multi-agent systems with switching topologies and a leader of bounded unknown input. J. Frank. Inst. 355(5), 2808–2825 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gong, P.: Distributed tracking of heterogeneous nonlinear fractional-order multi-agent systems with an unknown leader. J. Frank. Inst. 354(5), 2226–2244 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Devasia, S.: Iterative control for networked heterogeneous multi-agent systems with uncertainties. IEEE Trans. Autom. Control 62(1), 431–437 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Meng, X., Xie, L., Soh, Y.C.: Event-triggered output regulation of heterogeneous multiagent networks. IEEE Trans. Autom. Control. 63(12), 4429–4434 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Khalili, M., Zhang, X., Polycarpou, M.M., Parisini, T., Cao, Y.: Distributed adaptive fault-tolerant control of uncertain multi-agent systems. Automatica 87, 142–151 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chen, C., Wen, C., Liu, Z., Xie, K., Zhang, Y., Chen, C.P.: Adaptive consensus of nonlinear multi-agent systems with non-identical partially unknown control directions and bounded modelling errors. IEEE Trans. Autom. Control 62(9), 4654–4659 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gong, P., Lan, W.: Adaptive robust tracking control for uncertain nonlinear fractional-order multi-agent systems with directed topologies. Automatica 92, 92–99 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gong, P., Lan, W.: Adaptive robust tracking control for multiple unknown fractional-order nonlinear systems. IEEE Trans. Cybern. 99, 1–12 (2018)

    Google Scholar 

  47. Parlitz, U.: Estimating model parameters from time series by autosynchronization. Phys. Rev. Lett. 76(8), 1232 (1996)

    Article  Google Scholar 

  48. Konnur, R.: Synchronization-based approach for estimating all model parameters of chaotic systems. Phys. Rev. E 67(2), 027204 (2003)

    Article  Google Scholar 

  49. Gu, Y., Yu, Y., Wang, H.: Synchronization-based parameter estimation of fractional-order neural networks. Physica A 483, 351–361 (2017)

    Article  MathSciNet  Google Scholar 

  50. Hu, W., Yu, Y., Zhang, S.: A hybrid artificial bee colony algorithm for parameter identification of uncertain fractional-order chaotic systems. Nonlinear Dyn. 82(3), 1441–1456 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Panahi, S., Jafari, S., Pham, V.T., Kingni, S.T., Zahedi, A., Sedighy, S.H.: Parameter identification of a chaotic circuit with a hidden attractor using Krill herd optimization. Int. J. Bifurc. Chaos 26(13), 1650221 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ahandani, M.A., Ghiasi, A.R., Kharrati, H.: Parameter identification of chaotic systems using a shuffled backtracking search optimization algorithm. Soft Comput. 22(24), 8317–8339 (2018)

    Article  Google Scholar 

  53. Storn, R., Price, K.: Differential evolution-simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  54. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  55. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. Bhalekar, S.A.C.H.I.N., Daftardar-Gejji, V.A.R.S.H.A.: A predictor–corrector scheme for solving nonlinear delay differential equations of fractional order. J. Fract. Calc. Appl. 1(5), 1–9 (2011)

    MATH  Google Scholar 

  57. Young, K.D., Utkin, V.I., Ozguner, U.: A control engineer’s guide to sliding mode control. IEEE Trans. Control Syst. Technol. 7(3), 328–342 (1999)

    Article  Google Scholar 

  58. Shahamatkhah, E., Tabatabaei, M.: Leader-following consensus of discrete-time fractional-order multi-agent systems. Chin. Phys. B 27(1), 010701 (2018)

    Article  Google Scholar 

  59. Wyrwas, M., Mozyrska, D., Girejko, E.: Fractional discrete-time consensus models for single-and double-summator dynamics. Int. J. Syst. Sci. 49(6), 1212–1225 (2018)

    Article  MathSciNet  Google Scholar 

  60. Stanisławski, R., Latawiec, K.J.: Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: new stability criterion for FD-based systems. Bull. Pol. Acad. Technol. 61(2), 363–370 (2013)

    Google Scholar 

  61. Yuan, L., Yang, Q.: Parameter identification of fractional-order chaotic systems without or with noise: reply to comments. Commun. Nonlinear Sci. Numer. Simul. 67, 506–516 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by China Scholarship Council and the National Natural Science Foundation of China under Grants 61403019 and 61772063 and the Fundamental Research Funds for the Central Universities under Grant 2017JBM067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoguang Wen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Wen, G., Rahmani, A. et al. Differential evolution-based parameter estimation and synchronization of heterogeneous uncertain nonlinear delayed fractional-order multi-agent systems with unknown leader. Nonlinear Dyn 97, 1087–1105 (2019). https://doi.org/10.1007/s11071-019-05034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05034-1

Keywords

Navigation