Skip to main content
Log in

A nonlinear time transformation method to compute all the coefficients for the homoclinic bifurcation in the quadratic Takens–Bogdanov normal form

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present an algorithm based on the nonlinear time transformation method to approximate homoclinic orbits in planar autonomous nonlinear oscillators. With this approach, a unique perturbation solution up to any desired order can be obtained for them using trigonometric functions. To demonstrate its efficiency, the method is applied to calculate the homoclinic connection, both in the phase space and in the parameter space, of the versal unfolding of the nondegenerate Takens–Bogdanov singularity. Our approach considerably improves the results obtained so far by other methods (Melnikov, Poincaré–Lindstedt, regular perturbations, multiple scales, etc.). The approximations achieved to different orders are confirmed by numerical continuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Perko, L.M.: Differential Equations and Dynamical Systems. Springer, New York (2001)

    Book  MATH  Google Scholar 

  2. Algaba, A., Freire, E., Gamero, E., García, C.: A bifurcation analysis of planar nilpotent reversible systems. Nonlinear Dyn. 87, 835–849 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, S.H., Chen, Y.Y., Sze, K.Y.: A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators. J. Sound Vib. 322, 381–392 (2009)

    Article  Google Scholar 

  4. Chen, Y.Y., Chen, S.H.: Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method. Nonlinear Dyn. 58, 417–429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Belhaq, M., Fiedler, B., Lakrad, F.: Homoclinic connections in strongly self-excited nonlinear oscillators: the Melnikov function and the elliptic Lindstedt-Poincaré method. Nonlinear Dyn. 23, 67–86 (2000)

    Article  MATH  Google Scholar 

  6. Belhaq, M., Houssni, M., Freire, E., Rodríguez-Luis, A.J.: Asymptotics of homoclinic bifurcation in a three-dimensional system. Nonlinear Dyn. 21, 135–155 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheung, Y.K., Chen, S.H., Lau, S.L.: A modified Lindstedt–Poincaré method for certain strongly nonlinear oscillators. Int. J. Nonlinear Mech. 26, 367–378 (1990)

    Article  MATH  Google Scholar 

  8. He, J.H.: Modified Lindstedt–Poincaré methods for some strongly nonlinear oscillations—Part I: expansion of a constant. Int. J. Nonlinear Mech. 37, 309–314 (2002)

    Article  MATH  Google Scholar 

  9. He, J.H.: Modified Lindstedt-Poincaré methods for some strongly nonlinear oscillations—Part II: a new transformation. Int. J. Nonlinear Mech. 37, 315–320 (2002)

    Article  MATH  Google Scholar 

  10. Qin, B.W., Chung, K.W., Rodríguez-Luis, A.J., Belhaq, M.: Homoclinic-doubling and homoclinic-gluing bifurcations in the Takens–Bogdanov normal form with \(D_4\) symmetry. Chaos 28, 093107 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cao, Y.Y., Chung, K.W., Xu, J.: A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method. Nonlinear Dyn. 64, 221–236 (2011)

    Article  MathSciNet  Google Scholar 

  12. Chow, S., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  13. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  14. Perko, L.M.: A global analysis of the Bogdanov–Takens system. SIAM J. Appl. Math. 52, 1172–1192 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (2004)

    Book  MATH  Google Scholar 

  16. Wiggins, S.: Introduction to Applied Dynamical Systems and Chaos. Springer, New York (2003)

    MATH  Google Scholar 

  17. Kuznetsov, Y.A., Rinaldi, S.: Remarks on food chain dynamics. Math. Biosci. 134, 1–33 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific, Singapore (1998)

    Book  Google Scholar 

  19. Zhu, H., Campbell, S.A., Wolkowicz, G.S.K.: Bifurcation analysis of a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 63, 636–682 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Algaba, A., Gamero, E., Rodríguez-Luis, A.J.: A bifurcation analysis of a simple electronic circuit. Commun. Nonlinear Sci. Numer. Simulat. 10, 169–178 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Freire, E., Pizarro, L., Rodríguez-Luis, A.J., Fernández-Sánchez, F.: Multiparametric bifurcations in an enzyme-catalyzed reaction model. Int. J. Bifurcat. Chaos 15, 905–947 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Algaba, A., Gamero, E., García, C., Merino, M.: A degenerate Hopf-saddle-node bifurcation analysis in a family of electronic circuits. Nonlinear Dyn. 48, 55–76 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuznetsov, Y.A., Meijer, H.G.E., Al Hdaibat, B., Govaerts, W.: Improved homoclinic predictor for Bogdanov–Takens bifurcation. Int. J. Bifurcat. Chaos 24, 1450057 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuznetsov, Y.A., Meijer, H.G.E., Al Hdaibat, B., Govaerts, W.: Accurate approximation of homoclinic solutions in Gray–Scott kinetic model. Int. J. Bifurcat. Chaos 25, 1550125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhan, F., Liu, S., Zhang, X., Wang, J., Lu, B.: Mixed-mode oscillations and bifurcation analysis in a pituitary model. Nonlinear Dyn. 94, 807–826 (2018)

    Article  Google Scholar 

  26. Durga Prasad, K., Prasad, B.S.R.V.: Qualitative analysis of additional food provided predator–prey system with anti-predator behaviour in prey. Nonlinear Dyn. 96, 1765–1793 (2019)

    Article  Google Scholar 

  27. Li, C., Rousseau, C., Wang, X.: A simple proof for the unicity of the limit cycle in the Bogdanov–Takens system. Canad. Math. Bull. 33, 84–92 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gasull, A., Giacomini, H., Pérez-González, S., Torregrosa, J.: A proof of Perko’s conjectures for the Bogdanov–Takens system. J. Differ. Equ. 255, 2655–2671 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gasull, A., Giacomini, H., Torregrosa, J.: Some results on homoclinic and heteroclinic connections in planar systems. Nonlinearity 23, 2977–3001 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Al-Hdaibat, B., Govaerts, W., Kuznetsov, Y.A., Meijer, H.G.E.: Initialization of homoclinic solutions near Bogdanov–Takens points: Lindstedt–Poincaré compared with regular perturbation method. SIAM J. Appl. Dyn. Syst. 15, 952–980 (2017)

    Article  MATH  Google Scholar 

  31. Constantine, G.M., Savits, T.H.: A multivariate Faa di Bruno formula with applications. Trans. Am. Math. Soc. 348, 503–520 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Doedel, E.J., Champneys, A.R., Dercole, F., Fairgrieve, T., Kuznetsov, Y., Oldeman, B., Paffenroth, R., Sandstede, B., Wang, X., Zhang, C.: AUTO-07P: Continuation and bifurcation software for ordinary differential equations (with HomCont). Technical report, Concordia University (2012)

  33. Dhooge, A., Govaerts, W., Kuznetsov, Y.A., Meijer, H.G.E., Sautois, B.: New features of the software MatCont for bifurcation analysis of dynamical systems. Math. Comp. Model. Dyn. 14, 147–175 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro J. Rodríguez-Luis.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors thank the reviewers for their careful reading of the manuscript and their constructive remarks. This work has been partially supported by the Ministerio de Economía y Competitividad, Plan Nacional I+D+I co-financed with FEDER funds, in the frame of the projects MTM2014-56272-C2 and MTM2017-87915-C2-1-P and by the Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía (FQM-276, TIC-0130 and P12-FQM-1658). It was also supported by the Strategic Research Grant of the City University of Hong Kong (Grant No. 7004671). B.W.Q. is also grateful to the Instituto de Matemáticas de la Universidad de Sevilla (IMUS) and to the Centro de Estudios Avanzados en Física, Matemática y Computación de la Universidad de Huelva (CEAFMC) for collaborating in the financing of his research stays in Seville and Huelva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algaba, A., Chung, KW., Qin, BW. et al. A nonlinear time transformation method to compute all the coefficients for the homoclinic bifurcation in the quadratic Takens–Bogdanov normal form. Nonlinear Dyn 97, 979–990 (2019). https://doi.org/10.1007/s11071-019-05025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05025-2

Keywords

Navigation