Skip to main content
Log in

Normal Forms, Holomorphic Linearization and Generic Bifurcations of Dynamic Equations on Discrete Time Scales

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we extend the classical theory of normal forms for continuous and difference dynamical systems to dynamic equations on discrete time scales. As consequences of the well known results from the theory of analytic differential equations, we obtain some versions of the Poincaré and Siegel theorems for dynamic equations on discrete time scales. Using these results and known results on the stability of dynamic equations on time scales, we obtain some stability results for the nonlinear dynamic equations. We also prove some results on generic properties of bifurcation curves and the saddle-node bifurcation for one-parameter families of dynamic equations on arbitrary time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York (1988)

    Book  Google Scholar 

  2. Aulbach, B., Siegmund, S.: A spectral theory for nonautonomous difference equations. In: Lopéz-Fenner, J., Pinto, M. (Eds.) Proceedings of the Fifth International Conference on Differential Equations and Applications, in New Trends in Difference Equations, Temuco, Chile, 2000, pp. 45–55. Taylor and Francis (2002)

  3. Bodine, S., Lutz, D.A.: Exponential Functions on Time Scales: Their Asymptotic Behaviormand Calculations (2003)

  4. Bogdanov, R.I.: Versal deformation of a singularity of a vector field on the plane in case of zero eigenvalues. Sel. Math. Sov. 1(4), 373–387 (1981)

    Google Scholar 

  5. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  6. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)

    Book  Google Scholar 

  7. Brunovský, P.: On one-parameter families of diffemorpisms I. Comm. Math. Univ. Carol. 11, 559–582 (1970)

    Google Scholar 

  8. Brunovský, P.: On one-parameter families of diffemorpisms II. Comm. Math. Univ. Carol. 12, 765–784 (1971)

    Google Scholar 

  9. Chow, S.-N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982)

    Book  Google Scholar 

  10. Chow, S.-N., Li, Ch., Wang, D.: Normal Form and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  11. Chow, S.-N., Li, Ch., Wang, D.: Normal Form of Bifurcating periodic orbits. In: Golubitski, M., Guckenheimer, J. (Eds.) Multi-parameter Bifurcation Theory. Contemporary Mathematics, vol. 56, pp. 9–18. American Mathematical Society, Providence (1986)

  12. Elphick, C., Tirapegui, E., Brauchet, M.E., Coullet, P., Iooss, G.: A simple characterization for normal forms of singular vector fields. Phys. D Nonlinear Phenom. 29, 95–127 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  13. Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Springer, New York (1973)

    Book  Google Scholar 

  14. Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)

    Google Scholar 

  15. Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis, Universität Würzburg (1988)

  16. Hilger, S.: Analysis on measure chain—unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990)

    Article  MathSciNet  Google Scholar 

  17. Hilger, S.: Generalized theorem of Hartman–Grobman on measure chains. J. Austral. Math. Soc. Ser. A 60(1), 157–191 (1996)

    Article  MathSciNet  Google Scholar 

  18. Hoffacker, J., Jackson, B.: Stability results for higher dimensional equations on time scales. Int. J. Dyn. Syst. Differ. Equ. 3, 48–58 (2011)

    MathSciNet  Google Scholar 

  19. Homburg, A.J.: Bifurcation Theory. University of Amsterdam (2014)

  20. Ilyashenko, I., Yakovenko, S.: Lectures on Analytic Differential Equations, Graduate Studies in Mathematics, vol. 86. Providence (2007)

  21. Iooss, G.: Global characterization of the normal form for a vector field near a closed orbit. J. Differ. Equ. 76(1), 47–76 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. Medved, M.: Fundamentals of Dynamical Systems and Bifurcation Theory. Adam Hilger, Bristol, Philadelphia and New York (1992)

  23. Medved, M.: Generic properties of parametrized vector fields I. Czech. Math. J. 25, 376–388 (1975)

    Article  Google Scholar 

  24. Medved, M.: Generic properties of parametrized vector fields II. Czech. Math. J. 26, 71–83 (1976)

    Article  Google Scholar 

  25. Perko, J.: Differential Equations and Dynamical Systems. Springer, New York (2001)

    Book  Google Scholar 

  26. Pötzsche, Ch., Siegmund, S., Wirth, F.: A spectral characterization of exponential stability for linear time-invariant systems on time scales. Discret. Contin. Dyn. Syst. 6, 1223–1241 (2003)

    Article  MathSciNet  Google Scholar 

  27. Pötzsche, Ch.: Topological decoupling, linearization and perturbation on inhomogeneous time scales. J. Differ. Equ. 245, 1210–1242 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  28. Pötzsche, Ch.: Nonautonomous bifurcations of bounded solutions I: a Lyapunov–Schmidt approach. Discrete Cont. Dyn. Syst. Ser. B 14(2), 739–776 (2010)

    MathSciNet  Google Scholar 

  29. Pötzsche, Ch.: Nonautonomous bifurcations of bounded solutions II: a shovel bifurcation pattern. Discrete Cont. Dyn. Syst. Ser. A 31(1), 941–973 (2011)

    Article  MathSciNet  Google Scholar 

  30. Siegmund, S.: Normal forms for nonautonomous differential equations. J. Differ. Equ. 172(2), 541–573 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  31. Siegmund, S.: Normal forms for nonautonomous difference equations. Comput. Math. Appl. 45(6–9), 1059–1073 (2003)

    MathSciNet  Google Scholar 

  32. Sotomayor, J.: Generic bifurcations of Dynamical systems, Proceedings, Dynamical Systems, pp. 561–582. Academic Press, New York (1973)

  33. Sotomayor, J.: Generic one-parameter families of vector fields on two-dimensional manifolds. Publ. Math. IHES 43, 5–46 (1974)

    Article  MathSciNet  Google Scholar 

  34. Takens, F.: Singularities of vector fields. Publ. Math. IHES 43, 47–100 (1974)

    Article  MathSciNet  Google Scholar 

  35. Takens, F.: Forced Oscillation and Bifurcations. Communications in Mathematical Institute, Rijksuniversiteit, Utrecht, vol. 2(1), p. 111 (1974)

Download references

Acknowledgements

The author would like to express their gratitude to the anonymous referee for their valuable comments which significantly improved the original manuscript. This work was supported by the Slovak Research and Development Agency under the Contract No. APVV-18-0308 and by the Slovak Grant Agency VEGA-SAV-MŠ No. 1/0358/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Medveď.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Dedicated to the memory of professor Pavel Brunovský

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Grants VEGA 1/0358/20 and APVV-18-0308.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medveď, M. Normal Forms, Holomorphic Linearization and Generic Bifurcations of Dynamic Equations on Discrete Time Scales. J Dyn Diff Equat 36 (Suppl 1), 553–569 (2024). https://doi.org/10.1007/s10884-022-10177-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-022-10177-8

Keywords

Mathematics Subject Classification

Navigation