Skip to main content
Log in

Robust output feedback tracking control for a class of high-order time-delay nonlinear systems with input dead-zone and disturbances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the tracking control problem for a class of high-order nonlinear systems. Different from the related studies, the considered systems allow the existence of input dead-zone, external disturbances and polynomial growing conditions with time-varying delays. A new Lyapunov–Krasovskii functional is skillfully constructed and a robust output feedback tracking controller is designed by using a modified homogeneous domination method. It is guaranteed that all signals of the closed-loop system are bounded and the tracking error can converge to a compact domain which can be tuned sufficiently small. A simulation example is provided to show the validity of our control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yoo, S.J.: Low-complexity robust tracking of high-order nonlinear systems with application to underactuated mechanical dynamics. Nonlinear Dyn. 91(3), 1627–1637 (2018)

    Article  MATH  Google Scholar 

  2. Sun, W., Su, S.F., Xia, J., Wu, Y.: Adaptive tracking control of wheeled inverted pendulums with periodic disturbances. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2884707

    Google Scholar 

  3. Gao, F., Wu, Y.: Finite-time output feedback stabilisation of chained-form systems with inputs saturation. Int. J. Control 90(7), 1466–1477 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sakr, A., El-Nagar, A.M., El-Bardini, M., Sharaf, M.: Improving the performance of networked control systems with time delay and data dropouts based on fuzzy model predictive control. J. Frankl. Inst. (2018). https://doi.org/10.1016/j.jfranklin.2018.07.012

    MathSciNet  MATH  Google Scholar 

  5. Sharma, N., Bhasin, S., Wang, Q., Dixon, W.E.: Predictor-based control for an uncertain Euler–Lagrange system with input delay. Automatica 47(11), 2332–2342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gao, F., Wu, Y., Yuan, F.: Global output feedback stabilisation of high-order nonlinear systems with multiple time-varying delays. Int. J. Syst. Sci. 47(10), 2382–2392 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhao, X., Shi, P., Zheng, X., Zhang, L.: Adaptive tracking control for switched stochastic nonlinear systems with unknown actuator dead-zone. Automatica 60, 193–200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boulkroune, A., M’saad, M.: A practical projective synchronization approach for uncertain chaotic systems with dead-zone input. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4487–4500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hua, C., Liu, P.X., Guan, X.: Backstepping control for nonlinear systems with time delays and applications to chemical reactor systems. IEEE Trans. Ind. Electron. 56(9), 3723–3732 (2009)

    Article  Google Scholar 

  10. Duan, N., Min, H., Zhang, Z.: Adaptive stabilization control for high-order nonlinear time-delay systems with its application. J. Frankl. Inst. 354(14), 5825–5838 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhai, D., An, L., Li, J., Zhang, Q.: Delay-dependent adaptive dynamic surface control for nonlinear strict-feedback delayed systems with unknown dead zone. J. Frankl. Inst. 353(2), 279–302 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, Z., Lu, J., Xu, S.: Tuning functions-based robust adaptive tracking control of a class of nonlinear systems with time delays. Int. J. Robust Nonlinear Control 22(14), 1631–1646 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xue, L., Zhang, T., Zhang, W., Xie, X.J.: Global adaptive stabilization and tracking control for high-order stochastic nonlinear systems with time-varying delays. IEEE Trans. Autom. Control 63(9), 2928–2943 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jia, X., Xu, S., Chen, J., Li, Z., Zou, Y.: Global output feedback practical tracking for time-delay systems with uncertain polynomial growth rate. J. Frankl. Inst. 352(12), 5551–5568 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jia, X., Xu, S., Ma, Q., Qi, Z., Zou, Y.: Global practical tracking by output feedback for a class of non-linear time-delay systems. IMA J. Math. Control Inf. 33(4), 1067–1080 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhai, D., An, L., Dong, J., Zhang, Q.: Switched adaptive fuzzy tracking control for a class of switched nonlinear systems under arbitrary switching. IEEE Trans. Fuzzy Syst. 26(2), 585–597 (2018)

    Article  Google Scholar 

  17. Wu, J., Li, J.: Adaptive fuzzy control for perturbed strict-feedback nonlinear systems with predefined tracking accuracy. Nonlinear Dyn. 83(3), 1185–1197 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sun, W., Su, S.F., Wu, Y., Xia, J., Nguyen, V.T.: Adaptive fuzzy control with high-order Barrier Lyapunov functions for high-order uncertain nonlinear systems with full-state constraints. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2018.2890256

    Google Scholar 

  19. Tsang, K.M., Li, G.: Robust nonlinear nominal-model following control to overcome deadzone nonlinearities. IEEE Trans. Ind. Electron. 48(1), 177–184 (2001)

    Article  Google Scholar 

  20. Wang, H., Karimi, H.R., Liu, P.X., Yang, H.: Adaptive neural control of nonlinear systems with unknown control directions and input dead-zone. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–11 (2017)

    Google Scholar 

  21. Lai, G., Liu, Z., Zhang, Y., Chen, C.P., Xie, S., Liu, Y.: Fuzzy adaptive inverse compensation method to tracking control of uncertain nonlinear systems with generalized actuator dead zone. IEEE Trans. Fuzzy Syst. 25(1), 191–204 (2017)

    Article  Google Scholar 

  22. Zhou, J., Wen, C., Zhang, Y.: Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity. IEEE Trans. Autom. Control 51(3), 504–511 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hua, C., Zhang, L., Guan, X.: Robust Control for Nonlinear Time-Delay Systems. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  24. Li, Z., Li, T., Feng, G.: Adaptive neural control for a class of stochastic nonlinear time-delay systems with unknown dead zone using dynamic surface technique. Int. J. Robust Nonlinear Control 26(4), 759–781 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu, J., Wu, Y.: Global robust tracking control for a class of cascaded nonlinear systems using a reduced-order extended state observer. Nonlinear Dyn. 94(2), 1277–1289 (2018)

    Article  Google Scholar 

  26. Zhai, D., An, L., Ye, D., Zhang, Q.: Adaptive reliable \(H_\infty \) static output feedback control against markovian jumping sensor failures. IEEE Trans. Neural Netw. Learn. Syst. 29(3), 631–644 (2018)

    Article  MathSciNet  Google Scholar 

  27. Zhai, D., An, L., Dong, J., Zhang, Q.: Output feedback adaptive sensor failure compensation for a class of parametric strict feedback systems. Automatica 97, 48–57 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhai, J., Du, H.: Global output feedback stabilisation for a class of upper triangular stochastic nonlinear systems. Int. J. Control 87(10), 2106–2117 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Guan, W.: Adaptive output feedback control of a class of uncertain nonlinear systems with unknown time delays. Int. J. Syst. Sci. 43(4), 682–690 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gong, Q., Qian, C.: Global practical tracking of a class of nonlinear systems by output feedback. Automatica 43(1), 184–189 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, K., Yu, J., Sun, C.: Global robust regulation control for a class of cascade nonlinear systems subject to external disturbance. Nonlinear Dyn. 90(2), 1209–1222 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ai, W., Zhai, J., Fei, S.: Universal adaptive regulation for a class of nonlinear systems with unknown time delays and output function via output feedback. J. Frankl. Inst. 350(10), 3168–3187 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Choi, H.L., Lim, J.T.: Stabilization of a class of nonlinear systems by adaptive output feedback. Automatica 41(6), 1091–1097 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, B., Lin, W.: Robust output feedback stabilization of uncertain nonlinear systems with uncontrollable and unobservable linearization. IEEE Trans. Autom. Control 50(5), 619–630 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, W.S., Wu, J., Jiao, L.C.: State-feedback stabilization for a class of stochastic time-delay nonlinear systems. Int. J. Robust Nonlinear Control 22(11), 1921–1937 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, W.Q., Jing, Y.W., Zhang, S.Y.: Output-feedback stabilization for stochastic nonlinear systems whose linearizations are not stabilizable. Automatica 46(3), 752–760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, W., Ge, S.S., Wu, J., Gong, M.: Globally stable adaptive backstepping neural network control for uncertain strict-feedback systems with tracking accuracy known a priori. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 1842–1854 (2015)

    Article  MathSciNet  Google Scholar 

  38. Wu, J., Chen, W., Yang, F., Li, J., Zhu, Q.: Global adaptive neural control for strict-feedback time-delay systems with predefined output accuracy. Inf. Sci. 301, 27–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yu, W., Liu, S., Zhang, F.: Global output feedback regulation of uncertain nonlinear systems with unknown time delay. Int. J. Control Autom. Syst. 13(2), 327–335 (2015)

    Article  Google Scholar 

  40. Koo, M.S., Choi, H.L., Lim, J.T.: Global regulation of a class of uncertain nonlinear systems by switching adaptive controller. IEEE Trans. Autom. Control 55(12), 2822–2827 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ahmad, W.M., El-Khazali, R., Al-Assaf, Y.: Stabilization of generalized fractional order chaotic systems using state feedback control. Chaos Soliton Fract. 22(1), 141–150 (2004)

    Article  MATH  Google Scholar 

  42. Charef, A., Assabaa, M., Ladaci, S., Loiseau, J.J.: Fractional order adaptive controller for stabilised systems via high-gain feedback. IET Control Theory Appl. 7(6), 822–828 (2013)

    Article  MathSciNet  Google Scholar 

  43. Wei, Y., Peter, W.T., Yao, Z., Wang, Y.: Adaptive backstepping output feedback control for a class of nonlinear fractional order systems. Nonlinear Dyn. 86(2), 1047–1056 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhong, F., Li, H., Zhong, S.: State estimation based on fractional order sliding mode observer method for a class of uncertain fractional-order nonlinear systems. Signal Process. 127, 168–184 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingrong Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (Grant Nos. 61603231, 61603170 and 61773237), and Youth science and technology research fund of Shanxi Science and Technology Department of China (Grant No. 201801D221167).

Appendix: Some proofs

Appendix: Some proofs

Proof of Proposition 1

To prove Proposition 1, we consider the auxiliary system

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{x}_i = Sx_{i+1}^{p}, i=1,2,\ldots ,n-1,\\ \dot{x}_n = Su_1^p(v), \end{array} \right. \end{aligned}$$
(A.1)

and show that the derivative of \(V_n\) along system (A.1) satisfies (8). The proof is given as follows.

Step 1: Taking the time derivative of \(V_{1}\) along the solutions of system (A.1), we have \(\dot{V}_1= Sz_1(x_{2}^{p}-\alpha ^{p}_1)+Sz_1\alpha ^{p}_1. \) Take the virtual controller \( \alpha _1 =-(na_{n1})^{1/p}z_1=: -g_1z_1, \) with \(a_{11}\) being a positive constant independent of S. Therefore, we have

$$\begin{aligned} \dot{V}_1 \le -Sna_{n1}z^{p+1}_1+S|z_1||x_{2}^{p}-\alpha ^{p}_1|. \end{aligned}$$

Step\(k ( k=2,3,\ldots ,n)\): Suppose that \(V_{k-1}\) satisfies \( \dot{V}_{k-1} \le -S(n-k+2)\sum _{i=1}^{k-1}a_{n,i}z_i^{p+1} +S|z_{k-1}|\big |x_k^{p}-\alpha _{k-1}^{p}\big |. \) Then, taking the time derivative of the positive definite and radially unbounded function \(V_k\), we have

$$\begin{aligned} \dot{V}_{k}\le & {} -S(n-k+2)\sum _{i=1}^{k-1}a_{n,i}z_i^{p+1}\\&+\,S|z_{k-1}||x_k^{p}-\alpha _{k-1}^{p}| \\&+\,Sz_kx^p_{k+1}-z_k\sum _{j=1}^{k-1} \frac{\partial \alpha _{k-1}}{\partial x_j}Sx_{j+1}^{p}. \end{aligned}$$

Using Lemmas 1 and 3, it can be deduced that \( S|z_{k-1}||x_{k}^{p}-\alpha _{k-1}^p| \le \frac{a_{n,k-1}}{2} Sz^{p+1}_{k-1}+Sb_{kk}z^{p+1}_k, \) where \(a_{n,k-1}\) and \(b_{kk}\) are positive constants independent of S. Similarly, we have

$$\begin{aligned} -z_k\sum _{i=1}^{k-1} \frac{\partial \alpha _{k-1}}{\partial x_i}Sx_{i+1}^{p}\le & {} \frac{a_{n,k-1}}{2}Sz^{p+1}_{k-1}\\&+\, S\sum _{j=1}^{k-2}a_{nj}z^{p+1}_j \\&+\,S{\bar{b}}_{kk}z^{p+1}_k, \end{aligned}$$

where \(a_{n,j},j=1,2,\ldots ,k-2\) and \({\bar{b}}_{kk}\) are positive constants independent of S. Now, we define \({\bar{a}}_{nk}=b_{kk}+{\bar{b}}_{kk}\) and choose the virtual controller \(\alpha _k = -\big ((n-k+1)a_{nk}+{\bar{a}}_{nk}\big )^{1/p}z_k=: -g_kz_k\) with \(a_{nk}\) being a positive constant independent of S. We get

$$\begin{aligned} \dot{V}_{k}\le & {} -S(n-k+1)\sum _{i=1}^{k}a_{ni}z_i^{p+1} +S|z_{k}|\big |x_{k+1}^{p}-\alpha _{k}^{p}\big |, \end{aligned}$$

This completes Step k.

When \(k=n\), select \(V_n=V_{n-1}+\frac{1}{2}z_n^2\) and choose \(\alpha _n\)\(= -g_nz_n=-(\beta _1x_1+\beta _2x_2+\cdots +\beta _nx_n)\) with \(\beta _{1},\beta _{2},\ldots ,\)\(\beta _{n}\) being positive constants independent of S. Similarly, we obtain \( \dot{V}_{n} \le -S\sum _{i=1}^{n}a_{ni}z_i^{p+1} +S|z_{n}|\big |u_1^{p}(v)-\alpha _{n}^{p}\big |, \) which shows that Proposition 1 holds. \(\square \)

Proof of Proposition 2

Considering (7), it can be deduced that

$$\begin{aligned}&\left| \frac{\partial V_n}{\partial x_i}\right| \le C_i(|z_i|+|z_{i+1}|+\cdots +|z_{n}|),~i=1,2,\ldots ,n, \end{aligned}$$

where \(C_i>0\) is a constant. Noting that \(q_k\le p\), it is easy to obtain that

$$\begin{aligned}&\sum _{k=1}^m|\zeta _j|^{q_k} \le m(1+|\zeta _j|^{p}) \le m|\zeta _j|^{p}+m,\\&\quad \sum _{k=1}^m|\zeta _j(t-\tau _j(t))|^{q_k} \le m\big (1+|\zeta _j(t-\tau _j(t))|^{p}\big )\\&\quad \quad \le m|\zeta _j(t-\tau _j(t))|^{p}+m. \end{aligned}$$

From which and Assumption 1, we have

$$\begin{aligned}&|\psi _i(\cdot )| \le Cm\bigg (\sum _{j=1}^i|\zeta _j|^{p}+\sum _{j=1}^i|\zeta _j(t-\tau _j(t))|^{p}\bigg )\nonumber \\&\quad \quad \quad \quad \quad +\,2mi+d. \end{aligned}$$

Using the transformation (3), it follows that \(|\psi _i|\le Cm\big (\sum _{j=1}^iS^{l_jp}|x_j|^p +\sum _{j=1}^iS^{l_jp}|x_j(t-\tau _j)|^p\big )+2mi+d\). Then, in view of \(-l_i+l_jp=-\big (\frac{1}{p}+\frac{1}{p^2}+\cdots +\frac{1}{p^{i-1}}\big ) +\big (\frac{1}{p}+\frac{1}{p^2}+\cdots +\frac{1}{p^{j-2}}\big )+1\le 1-\frac{1}{p^{i-1}} ,1\le j\le i\le n\), (7) and \(S>1\), it follows that

$$\begin{aligned} |f_1|\le & {} C\big (|x_1+y_r|^{p}+|x_{1}(t-\tau _1)+y_r(t-\tau _1)|^{p}\big ) + d-\dot{y}_r\nonumber \\\le & {} {\bar{C}}\big (|z_1|^{p}+|z_{1}(t-\tau _1)|^{p}\big ) +\frac{{\bar{d}}}{S^{l_1}}, \end{aligned}$$
(A.2)
$$\begin{aligned} |f_l|\le & {} CS^{1-1/p^{l-1}}\sum _{j=1}^{l}\big (|x_j|^{p}+|x_{j}(t-\tau _j)|^{p}\big ) +\frac{{\bar{d}}}{S^{l_l}} \nonumber \\\le & {} {\bar{C}}S^{1-1/p^{l-1}}\sum _{j=1}^{l}\big (|z_j|^{p}+|z_{j}(t-\tau _j)|^{p}\big )\nonumber \\&+\,{\bar{C}}S^{1-1/p^{l-1}}\sum _{j=1}^{l-1}|z_{j}(t-\tau _{j+1})|^{p} +\frac{{\bar{d}}}{S^{l_l}}, \end{aligned}$$
(A.3)

where \(l=2,3,\ldots ,n\) and \({\bar{d}},{\bar{C}}\) are appropriate constants. For \(i=1, 2,\ldots ,n\), there are constants \(\lambda , B_{ij}(\lambda ), {\bar{B}}_{ij}\) and \({\hat{B}}_{ij}\) such that

$$\begin{aligned}&C_i\big (|z_i|+|z_{i+1}|+\cdots +|z_{n}|\big )|f_i| \nonumber \\&\quad \le C_i\big (|z_i|+|z_{i+1}|+\cdots +|z_{n}|\big )\bigg ({\bar{C}}S^{1-1/p^n} \sum _{j=1}^{i}\big (|z_j|^{p}\nonumber \\&\quad +\,|z_{j}(t-\tau _j)|^{p}\big ) +{\bar{C}}S^{1-1/p^n}\sum _{j=1}^{i-1}|z_{j}(t-\tau _{j+1})|^{p} +\frac{{\bar{d}}}{S^{l_i}}\bigg )\nonumber \\&\quad \le e^{-m\gamma _1}(1-\gamma _2)S^{1-1/p^{n}}\sum _{j=1}^{i-1}{\hat{B}}_{ij}z^{p+1}_j(t-\tau _{j+1})\nonumber \\&\quad +\,e^{-m\gamma _1}(1-\gamma _2)S^{1-1/p^{n}}\sum _{j=1}^{i}{\bar{B}}_{ij}z^{p+1}_j(t-\tau _j)\nonumber \\&\quad +\,S^{1-1/p^{n}}\sum _{j=1}^{n}B_{ij}(\lambda )z^{p+1}_j +\frac{1}{\lambda }\left( \frac{{\bar{d}}}{S^{l_i}}\right) ^{\frac{p+1}{p}}. \end{aligned}$$
(A.4)

Defining \(b_j=\sum _{i=1}^{n}B_{ij}\), \({\bar{b}}_j=\sum _{i=1}^{n}{\bar{B}}_{ij}\), \({\hat{b}}_j=\sum _{i=1}^{n}{\hat{B}}_{ij}\), and using (A.4) and inequality \(\left| \frac{\partial V_n}{\partial x}F\right| \le \sum _{i=1}^{n}\big |\frac{\partial V_n}{\partial x_i}f_i\big |,\) Proposition 2 holds.

Proof of Proposition 3

In view of Lemma 1, (A.2) and (A.3), one has

$$\begin{aligned} {\tilde{\varepsilon }}_{i}f_i\le & {} {\bar{C}}S^{1-1/p^{i-1}}|{\tilde{\varepsilon }}_{i}| \bigg (\sum _{j=1}^{i}|z_j|^p+\sum _{j=1}^{i}|z_j(t-\tau _j)|^p \nonumber \\&+\,\sum _{j=1}^{i-1}|z_j(t-\tau _{j+1})|^p \bigg ) +|{\tilde{\varepsilon }}_{i}|\frac{{\bar{d}}}{S^{l_i}}\nonumber \\\le & {} S^{1-1/p^{n}}\bigg (\sum _{j=1}^{i}C_{ij}z^{p+1}_j +\sum _{j=1}^{i}{\bar{C}}_{ij}z^{p+1}_j(t-\tau _j) \nonumber \\&+\,e^{-m\gamma _1}(1-\gamma _2){\sum _{j=1}^{i-1}}{\hat{C}}_{ij}z^{p+1}_j(t-\tau _{j+1})\bigg ) \nonumber \\&+\,S^{1-1/p^{i}}Q_i(\lambda ){\tilde{\varepsilon }}^{p+1}_{i} +\frac{1}{2\lambda }\left( \frac{{\bar{d}}}{S^{l_i}}\right) ^{\frac{p+1}{p}}, \end{aligned}$$
(A.5)

where \(C_{ij},{\bar{C}}_{ij},{\hat{C}}_{ij},Q_i(\lambda )\) are positive constants independent of S. Similarly, it follows that

$$\begin{aligned}&M_i{\tilde{\varepsilon }}_{i}f_{i-1} \nonumber \\&\le {\bar{C}}M_iS^{1-1/p^{i-2}}|{\tilde{\varepsilon }}_{i}| \bigg (\sum _{j=1}^{i-2}|z_j(t-\tau _{j+1})|^p\nonumber \\&\quad +\sum _{j=1}^{i-1}|z_j|^p+\sum _{j=1}^{i-1}|z_j(t-\tau _j)|^p \bigg )+ M_i|{\tilde{\varepsilon }}_{i}|\frac{{\bar{d}}}{S^{l_{i-1}}} \nonumber \\&\le S^{1-1/p^{n}}\sum _{j=1}^{i-1}D_{ij}z^{p+1}_j +S^{1-1/p^{n}}\sum _{j=1}^{i-1}{\bar{D}}_{ij}z^{p+1}_j(t-\tau _j) \nonumber \\&\quad +\,e^{-m\gamma _1}(1-\gamma _2)S^{1-1/p^{n}}\sum _{j=1}^{i-2}{\hat{D}}_{ij}z^{p+1}_j(t-\tau _{j+1}) \nonumber \\&\quad +\,S^{1-1/p^{i}}{\bar{Q}}_i(M_i,\lambda ){\tilde{\varepsilon }}^{p+1}_{i} +\frac{1}{2\lambda }\left( \frac{{\bar{d}}}{S^{l_{i}}}\right) ^{\frac{p+1}{p}}, \end{aligned}$$
(A.6)

where \(D_{ij},{\bar{D}}_{ij},{\hat{D}}_{ij},{\bar{Q}}_i(M_i,\lambda )\) are positive constants independent of S. Utilizing (A.5) and (A.6), and defining \(c_j=\sum _{i=1}^{n}(C_{ij}+D_{ij})\), \({\bar{c}}_j=\sum _{i=1}^{n}({\bar{C}}_{ij}+{\bar{D}}_{ij})\), \({\hat{c}}_j=\sum _{i=1}^{n}({\hat{C}}_{ij}+{\hat{D}}_{ij})\), \(A_i(M_i,\lambda )=Q_i(\lambda )+{\bar{Q}}_i(M_i,\lambda )\), we complete the proof. \(\square \)

Proof of Proposition 4

By Lemma 1, there exist constants \({\bar{H}}_{i-1}, {\bar{H}}_i\) and \(B_0\) such that

$$\begin{aligned}&4^{p-1}pg^{p-1}_i|{\tilde{\varepsilon }}_{i-1}||\varepsilon _{i}|\big (z^{p-1}_i +z^{p-1}_{i-1}+\varepsilon ^{p-1}_{i}\big ) \nonumber \\&\quad \le {\bar{H}}_iz^{p+1}_i+{\bar{H}}_{i-1}z^{p+1}_{i-1}+B_0{\tilde{\varepsilon }}^{p+1}_{i-1}+\varepsilon ^{p+1}_{i}. \end{aligned}$$
(A.7)

Using (5), it yields that

$$\begin{aligned} \varepsilon ^{p+1}_{i}= & {} \big ({\tilde{\varepsilon }}_{i}+M_i{\tilde{\varepsilon }}_{i-1}+ M_iM_{i-1}{\tilde{\varepsilon }}_{i-2}+\cdots \nonumber \\&+\, M_iM_{i-1}\cdots M_3{\tilde{\varepsilon }}_{2}\big )^{p+1}\nonumber \\\le & {} \sum _{j=2}^{i-1} {\bar{B}}_j(M_{j+1},M_{j},\ldots ,M_i){\tilde{\varepsilon }}^{p+1}_{j} \nonumber \\&\quad +\bar{B}_i{\tilde{\varepsilon }}^{p+1}_{i}, \end{aligned}$$
(A.8)

where \({\bar{B}}_j,j=2,3,\ldots ,i-1\) are positive constants depended on the constants \(M_{j+1},M_{j+2},\ldots ,M_i\), and \({\bar{B}}_i>0\) is a constant. By (5), Lemmas 1 and 3, we have \( x^p_i-{\hat{x}}^p_i \le p|x_i-\hat{x}_i|\big (|x_i-{\hat{x}}_i|^{p-1}+|{\hat{x}}_i|^{p-1}\big ) \le p|\varepsilon _{i}|\big (\varepsilon _{i}^{p-1} +2^{p-2}\big (x^{p-1}_i+\varepsilon ^{p-1}_{i}\big )\big ) \le 2^{p-1}p|\varepsilon _{i}| \big (\big (z_i-g_{i-1}z_{i-1}\big )^{p-1}+\varepsilon ^{p-1}_{i}\big ) \le 4^{p-1}pg^{p-1}_{i-1}|\varepsilon _{i}| \big (z^{p-1}_i+z^{p-1}_{i-1}+\varepsilon ^{p-1}_{i}\big ). \) From which and (A.7), (A.8), we obtain

$$\begin{aligned} {\tilde{\varepsilon }}_{i-1}(x^p_i-{\hat{x}}^p_i)\le & {} \sum _{j=2}^{i-2} {\bar{B}}_j(M_{j+1},M_{j+2},\ldots ,M_i){\tilde{\varepsilon }}^{p+1}_{j} \nonumber \\&+\,\big (B_0+{\bar{B}}_{i-1}(M_i)\big ){\tilde{\varepsilon }}^{p+1}_{i-1} +\,{\bar{B}}_i{\tilde{\varepsilon }}^{p+1}_{i}\nonumber \\&+\,{\bar{H}}_iz^{p+1}_i+{\bar{H}}_{i-1}z^{p+1}_{i-1}. \end{aligned}$$
(A.9)

It follows from (A.9) that

$$\begin{aligned}&S\sum _{i=3}^{n}{\tilde{\varepsilon }}_{i-1}(x^p_i-{\hat{x}}^p_i)\nonumber \\&\quad \le \, S\sum _{i=2}^{n-1} {\hat{B}}_i(M_{i+1},M_{i+2},\ldots ,M_n){\tilde{\varepsilon }}^{p+1}_{i} \nonumber \\&\quad \quad +\,S\sum _{i=2}^{n}{\hat{H}}_iz^{p+1}_i+S{\hat{B}}_n{\tilde{\varepsilon }}^{p+1}_{n} , \end{aligned}$$
(A.10)

where \({\hat{B}}_i,i=2,3,\ldots ,n-1\) are positive constants depended on the constants \(M_{i+1},M_{i+2},\ldots ,M_n\), and \({\hat{H}}_1,\)\({\hat{H}}_2,\ldots ,{\hat{H}}_n,{\hat{B}}_n\) are constants. Similarly, it can be deduced that

$$\begin{aligned}&-S\sum _{i=2}^{n}M_i{\tilde{\varepsilon }}_{i}\Big (x_i^p-\big (\hat{x}_i+{\tilde{\varepsilon }}_{i}\big )^p\Big ) \le S\sum _{i=1}^{n}{\tilde{H}}_iz^{p+1}_i\nonumber \\&\quad +\,S\sum _{i=2}^{n-1} {\tilde{B}}_i(M_{i+1},M_{i+2},\ldots ,M_n){\tilde{\varepsilon }}^{p+1}_{i}\nonumber \\&\quad +\,S{\tilde{B}}_n{\tilde{\varepsilon }}^{p+1}_{n}, \end{aligned}$$
(A.11)

where \({\tilde{H}}_1,{\tilde{H}}_2,\ldots ,{\tilde{H}}_n,{\tilde{B}}_n\) are constants and \({\tilde{B}}_i(M_{i+1},\)\(M_{i+2},\ldots ,M_n),i=2,3,\ldots ,n-1\) are positive constants independent of S. In view of Lemma 4, we have \( -{\tilde{\varepsilon }}_{i}((\hat{x}_i+{\tilde{\varepsilon }}_{i})^p-{\hat{x}}^p_i) \le -\frac{1}{2^{p-1}}{\tilde{\varepsilon }}^{p+1}_{i}, \) which indicates

$$\begin{aligned}&\quad -S\sum _{i=2}^{n}M_i{\tilde{\varepsilon }}_{i}\Big (\big (\hat{x}_i+{\tilde{\varepsilon }}_{i}\big )^p-{\hat{x}}^p_i\Big )\nonumber \\&\quad \le -S\sum _{i=2}^{n}\frac{M_i}{2^{p-1}}{\tilde{\varepsilon }}^{p+1}_{i}. \end{aligned}$$
(A.12)

Using (A.11) and (A.12), it is clear that

$$\begin{aligned}&-S\sum _{i=2}^{n}M_i{\tilde{\varepsilon }}_{i} \big (x_i^p-{\hat{x}}^p_i\big ) \nonumber \\&\quad = -S\sum _{i=2}^{n}M_i{\tilde{\varepsilon }}_{i}\Big (x_i^p-\big (\hat{x}_i+{\tilde{\varepsilon }}_{i}\big )^p\Big )\nonumber \\&\quad \quad -\,S\sum _{i=2}^{n}M_i{\tilde{\varepsilon }}_{i}\Big (\big (\hat{x}_i+{\tilde{\varepsilon }}_{i}\big )^p-{\hat{x}}^p_i\Big )\nonumber \\&\quad \le -S\sum _{i=2}^{n}\frac{M_i}{2^{p-1}}{\tilde{\varepsilon }}^{p+1}_{i} +S\sum _{i=1}^{n}{\tilde{H}}_iz^{p+1}_i +S{\tilde{B}}_n{\tilde{\varepsilon }}^{p+1}_{n}\nonumber \\&\quad \quad +\,S\sum _{i=2}^{n-1} {\tilde{B}}_i(M_{i+1},M_{i+2},\ldots ,M_n){\tilde{\varepsilon }}^{p+1}_{i}. \end{aligned}$$
(A.13)

Considering (A.10) and (A.13), and defining \(h_1={\tilde{H}}_1\), \(h_i={\hat{H}}_i+{\tilde{H}}_i\) and \(B_i={\hat{B}}_i+{\tilde{B}}_i, i=2,3,\ldots ,n\), Proposition 4 is proved. \(\square \)

Proof of the inequality (12)

It is easy to obtain from (2), (3) and (9) that

$$\begin{aligned} u^p_1(v)-{\bar{u}}^p= \left\{ \begin{array}{ll} m^p_{r}\Big (\frac{{\bar{u}}}{m_r}+\frac{{\bar{b}}_r-b_{r}(t)}{S^{l_{n+1}}}\Big )^p-{\bar{u}}^p, ~~~{\bar{u}}>0,\\ 0,\qquad \qquad \qquad \qquad \qquad \quad ~~ {\bar{u}}=0,\\ m^p_{l}\Big (\frac{{\bar{u}}}{m_l}+ \frac{-{\bar{b}}_l+b_{l}(t)}{S^{l_{n+1}}}\Big )^p-{\bar{u}}^p, \,~~{\bar{u}}<0. \end{array} \right. \end{aligned}$$

When \({\bar{u}}>0\), we obtain

$$\begin{aligned}&u^p_1(v)-{\bar{u}}^p \nonumber \\&\quad = m^p_{r}\left( \frac{{\bar{u}}}{m_r}+\frac{{\bar{b}}_r-b_{r}(t)}{S^{l_{n+1}}}\right) ^p -{\bar{u}}^p \nonumber \\&\quad =m^p_{r}\sum _{k=0}^{p}\frac{p!}{k!(n-k)!}\left( \frac{{\bar{u}}}{m_r}\right) ^k \left( \frac{{\bar{b}}_r-b_{r}(t)}{S^{l_{n+1}}}\right) ^{p-k} -{\bar{u}}^p \nonumber \\&\quad =\sum _{k=0}^{p-1}\frac{p!}{k!(n-k)!} {\bar{u}}^k\bigg (\frac{m_r\big ({\bar{b}}_r-b_{r}(t)\big )}{S^{l_{n+1}}}\bigg )^{p-k}. \end{aligned}$$
(A.14)

Noticing \(x_1=z_1,{\hat{x}}_i=x_i-\varepsilon _i=z_i-g_{i-1}z_{i-1}-\varepsilon _i, i=2,3,\ldots ,n\), there exists a constant \(\beta _0\) satisfying

$$\begin{aligned} {\bar{u}}= & {} -\big (\beta _1x_1+\beta _2{\hat{x}}_2+\cdots +\beta _n{\hat{x}}_n\big )\nonumber \\\le & {} \beta _0\bigg (\sum _{i=1}^{n}|z_i|+\sum _{j=2}^{n}|\varepsilon _j|\bigg ). \end{aligned}$$
(A.15)

It follows from (A.14) and (A.15) that

$$\begin{aligned}&|z_{n}||u_1^p(v)-{\bar{u}}^p| \le \sum _{i=1}^{n}\varGamma _iz^{p+1}_i +\sum _{j=2}^{n} \gamma _{1j}\varepsilon ^{p+1}_{j}\nonumber \\&\quad +\,\frac{\delta }{S^{l_{n+1}(p+1)}}, \end{aligned}$$
(A.16)

where \(\varGamma _i,i=1,2,\ldots ,n\) and \(\gamma _{1j},j=2,3,\ldots ,n\) are constants, and \(\delta =\max \{{\bar{b}}_r^{p+1},{\bar{b}}_l^{p+1}\}\) is a constant. With the similar method, one can show that (A.16) still holds for \({\bar{u}}\le 0\). Next, applying Lemma 3, \(\varepsilon _i=x_i-{\hat{x}}_i,i=2,3,\ldots ,n\), (A.15), and considering the definition of \({\bar{u}}\) and \(\alpha _n\), there exists a constant \(\mu >0\) such that

$$\begin{aligned} |{\bar{u}}^p-\alpha ^p_n|= & {} \big |-\big (\beta _1x_1+\beta _2{\hat{x}}_2+\cdots +\beta _n{\hat{x}}_n\big )^p \\&+\big (\beta _1x_1+\beta _2x_2+\cdots +\beta _n x_n\big )^p\big | \\\le & {} \Big ( \big |\beta _2\varepsilon _2 +\beta _3\varepsilon _3+\cdots +\beta _n\varepsilon _n\big |^{p-1} +|{\bar{u}}|^{p-1} \Big ) \\&+p\big |\beta _2\varepsilon _2+\beta _3\varepsilon _3+\cdots +\beta _n\varepsilon _n\big | \\\le & {} \mu \sum _{j=2}^{n}|\varepsilon _j| \bigg (\sum _{i=1}^{n}|z_i|^{p-1}+\sum _{i=2}^{n}|\varepsilon _i|^{p-1}\bigg ). \end{aligned}$$

Therefore, in view of Lemma 1, there exist constants \(\varLambda _i\) and \(\gamma _{2j}\) satisfying

$$\begin{aligned} |z_{n}||{\bar{u}}^p-\alpha ^p_n|\le & {} \mu |z_{n}|\sum _{j=2}^{n}|\varepsilon _j| \bigg (\sum _{i=1}^{n}|z_i|^{p-1}+\sum _{i=2}^{n}|\varepsilon _i|^{p-1}\bigg ) \nonumber \\\le & {} \sum _{i=1}^{n}\varLambda _iz^{p+1}_i +\sum _{j=2}^{n} \gamma _{2j}\varepsilon ^{p+1}_{j}. \end{aligned}$$
(A.17)

Using (5), we have \( \varepsilon _i = {\tilde{\varepsilon }}_i+\sum _{j=2}^{i-1}M_iM_{i-1}\cdots M_{j+1}{\tilde{\varepsilon }}_j, \) which further indicates that

$$\begin{aligned}&\sum _{j=2}^{n} (\gamma _{1j}+\gamma _{2j})\varepsilon ^{p+1}_{j}\nonumber \\&\quad \le \sum _{j=2}^{n-1} D_j(M_{j+1},M_{j+2},\ldots ,M_n){\tilde{\varepsilon }}^{p+1}_{j} \nonumber \\&\quad +D_n{\tilde{\varepsilon }}^{p+1}_{n}, \end{aligned}$$
(A.18)

where \(D_j\) is a constant depended on \(M_{j+1},M_{j+2},\ldots ,\)\(M_n\). Substituting (A.16), (A.17) and (A.18) into \(|z_n|\cdot |u_1^p(v)-\alpha _n^p| \le |z_n|\cdot |u_1^p(v)-{\bar{u}}^p|+|z_n|\cdot |{\bar{u}}^p-\alpha _n^p|\) and defining \({\hat{d}}_i=\varGamma _i+\varLambda _i\), we show that the conclusion holds. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Xue, L., Sun, W. et al. Robust output feedback tracking control for a class of high-order time-delay nonlinear systems with input dead-zone and disturbances. Nonlinear Dyn 97, 921–935 (2019). https://doi.org/10.1007/s11071-019-05018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05018-1

Keywords

Navigation