Skip to main content
Log in

Global robust regulation control for a class of cascade nonlinear systems subject to external disturbance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The global robust regulation problem is studied for a class of cascade nonlinear systems subject to the external disturbance. The considered system represents more general classes of nonlinear uncertain systems, for example, the much weaker integral input-to-state stable (iISS) cascaded subsystem, the unknown control coefficients, the unmeasured states appearing in the nonlinear uncertainties and the external disturbance additively in the input channel. Combined the ideas of the Nussbaum-type gain and the disturbance as a generalized state, a dynamic extended state observer (ESO) based on a Riccati differential equation is constructed to overcome these difficulties. It is shown that the global robust regulation problem is well addressed by the proposed method. In the simulation part, the fan speed control system is used as a practical example to demonstrate its efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Karafyllis, I., Jiang, Z.P.: Stability and Stabilization of Nonlinear Systems. Springer, London (2011)

    Book  MATH  Google Scholar 

  2. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Sontag, E.D.: Comments on integral variants of ISS. Syst. Control Lett. 34(1–2), 93–100 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Angeli, D., Sontag, E.D., Wang, Y.: A characterization of integral input to state stability. IEEE Trans. Autom. Control 45(6), 1082–1087 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ito, H.: A Lyapunov approach to cascade interconnection of integral input-to-state stable systems. IEEE Trans. Autom. Control 55(3), 702–708 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arcak, M., Angeli, D., Sontag, E.D.: A unifying integral ISS framework for stability of nonlinear cascades. SIAM J. Control Optim. 40(6), 1888–1904 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jayawardhana, B., Ryan, E.P., Teel, A.R.: Bounded-energy-input convergent-state property of dissipative nonlinear systems: an iISS approach. IEEE Trans. Autom. Control 55(1), 159–164 (2010)

    Article  MATH  Google Scholar 

  8. Xu, D.B., Huang, J., Jiang, Z.P.: Global adaptive output regulation for a class of nonlinear systems with iISS inverse dynamics using output feedback. Automatica 49(7), 2184–2191 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Wang, J.Z., Yu, J.B., Zhou, Q., Wu, Y.Q.: Global robust output tracking control for a class of cascade nonlinear systems with unknown control directions. Int. J. Comput. Math. 92(5), 939–953 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jiang, Z.P., Mareels, I., Hill, D.J., Huang, J.: A unifying framework for global regulation via nonlinear output feedback: from ISS to iISS. IEEE Trans. Autom. Control 49(4), 549–562 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wu, Y.Q., Yu, J.B., Zhao, Y.: Further results on global asymptotic regulation control for a class of nonlinear systems with iISS inverse dynamics. IEEE Trans. Autom. Control 56(4), 941–946 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wu, Y.Q., Yu, J.B., Zhao, Y.: Output feedback regulation control for a class of cascade nonlinear systems and its application to fan speed control. Nonlinear Anal. Real World Appl. 13(3), 1278–1291 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Yu, X., Wu, Y., Xie, X.: Reduced-order observer-based output feedback regulation for a class of nonlinear systems with iISS inverse dynamics. Int. J. Control 85(12), 1942–1951 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yu, X., Liu, G.H.: Output feedback control of nonlinear systems with uncertain ISS/iISS supply rates and noises. Nonlinear Anal. Model. Control 19(2), 286–299 (2014)

    MATH  MathSciNet  Google Scholar 

  15. Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control 24(6), 993–1015 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nazrulla, M., Khalil, H.K.: Robust stabilization of nonminimum phase nonlinear systems using extended high-gain observers. IEEE Trans. Autom. Control 56(4), 802–813 (2011)

    Article  MATH  Google Scholar 

  17. Han, J.Q.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electr. 56(3), 900–906 (2009)

    Article  Google Scholar 

  18. Yao, J.Y., Jiao, Z.X., Ma, D.W.: Output feedback robust control of direct current motors with nonlinear friction compensation and disturbance rejection. ASME J. Dyn. Syst. Meas. Control 137(4), 041004 (2015)

    Article  Google Scholar 

  19. Guo, B.Z., Zhao, Z.L.: On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst. Control Lett. 60(6), 420–430 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mobayen, S.: Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dyn. 80(1), 669–683 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bayat, F., Mobayen, S., Javadi, S.: Finite-time tracking control of nth-order chained-form nonholonomic systems in the presence of disturbances. ISA Trans. 63(7), 78–83 (2016)

    Article  Google Scholar 

  22. Zhang, C.L., Yang, J., Li, S.H., Yang, N.: A generalized active disturbance rejection control method for nonlinear uncertain systems subject to additive disturbance. Nonlinear Dyn. 83(4), 2361–2372 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chen, W.H.: Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mech. 9(4), 706–710 (2004)

    Article  Google Scholar 

  24. Yang, J., Chen, W.H., Li, S.H.: Nonlinear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties. IET Control Theory Appl. 51, 2053 (2011)

    Article  Google Scholar 

  25. Sun, H.B., Guo, L.: Composite adaptive disturbance observer based control and backstepping method for nonlinear system with multiple mismatched disturbances. J. Frank. Inst. 351(2), 1027–1041 (2014)

    Article  MATH  Google Scholar 

  26. Wei, X.J., Chen, N., Li, W.Q.: Composite adaptive disturbances observer based control for a class of nonlinear systems with multisources disturbance. Int. J. Adapt. Control Signal Process. 27(3), 199–208 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mohammadi, A., Tavakoli, M., Marquez, H.J., Hashemzadeh, F.: Nonlinear disturbance observer design for robotic manipulators. Control Eng. Pract. 21(3), 253–267 (2013)

    Article  Google Scholar 

  28. Liu, Y.G.: Global asymptotic regulation via time-varying output feedback for a class of uncertain nonlinear systems. SIAM J. Control Optim. 51(6), 4318–4342 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Freeman, R.A.: Kokotovi\(\acute{c}\), P.V.: Robust Nonlinear Control Design. MA:Birkhauser, Boston (1996)

  30. Xi, Z.R., Feng, G., Jiang, Z.P., Cheng, D.Z.: Output feedback exponential stabilization of uncertain chained systems. J. Frank. Inst. 344(1), 36–57 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ikeda, M., Maeda, H., Kodama, S.: Stabilization of linear systems. SIAM J. Control Optim. 10(4), 716–729 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wang, C.N., Chu, R.T., Ma, J.: Controlling a chaotic resonator by means of dynamic track control. Complexity 21(1), 370–378 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61673243, 61304008 and 61520106009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyin Sun.

Appendix: Proof of Proposition 1

Appendix: Proof of Proposition 1

From \(\dot{\overbrace{P^{-1}(t)}}=-P^{-1}(t)\dot{P}(t)P^{-1}(t)\), by virtue of (18) and (22), we can show that

$$\begin{aligned} \dot{V}_{e}= & {} -{e}^TP^{-2}(t){e}-{e}_1^2+\frac{2{e}_1x_1}{{\delta ^*}b}\nonumber \\&+\frac{2{e}^TP^{-1}(t)C_{n+1}h(t)}{\delta ^*} +\frac{2{e}^TP^{-1}(t)B{\cdot }G(\zeta ,y)}{{\delta ^*}b}.\nonumber \\ \end{aligned}$$
(103)

Given the choice of \(\delta ^*\), by completing the squares, we have

$$\begin{aligned}&\frac{2{e}_1x_1}{{\delta ^*}b}\le {e}_1^2+y^2,\end{aligned}$$
(104)
$$\begin{aligned}&\frac{2{e}^TP^{-1}(t)B{\cdot }G(\zeta ,y)}{{\delta ^*}b}\le \frac{1}{4}{e}^TP^{-2}(t){e}\nonumber \\&\quad +\,8\sum \limits _{i=1}^{n}\Big (\phi _{i1}^2(|\zeta |)+\phi _{i2}^2(|y|)\Big ), \end{aligned}$$
(105)
$$\begin{aligned}&\frac{2{e}^TP^{-1}(t)C_{n+1}h(t)}{\delta ^*}\le \frac{1}{4}{e}^TP^{-2}(t){e} +4h^2(t).\nonumber \\ \end{aligned}$$
(106)

A direct substitution leads to (24).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Yu, J. & Sun, C. Global robust regulation control for a class of cascade nonlinear systems subject to external disturbance. Nonlinear Dyn 90, 1209–1222 (2017). https://doi.org/10.1007/s11071-017-3721-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3721-9

Keywords

Navigation