Skip to main content
Log in

Mixed lump–soliton solutions to the two-dimensional Toda lattice equation via symbolic computation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on symbolic computation, we derive explicit rational and rational–exponential solutions to two-dimensional Toda lattice equation via the direct bilinear method. For two types of solutions, the auxiliary functions are taken as the ansatzs with the quadratic function and the combination of quadratic and exponential functions, respectively. It is shown that the purely rational solution depicts a lump with the locality in all directions in the space. The mixed rational–exponential solutions are classified to two kinds of interaction solution: (i) The first one describes the interaction of one lump with one line soliton, in which fission and fusion phenomena occurs between both local waves. (ii) The second one corresponds to the interaction of one lump with two resonant line solitons, which indicates a rogue wave arising from the resonant soliton pair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Manakov, S.V., Zakharov, V.E., Bordag, L.A., Its, A.R., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys. Lett. A 63, 205 (1977)

    Article  Google Scholar 

  2. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gilson, C.R., Nimmo, J.J.C.: Lump solutions of the BKP equation. Phys. Lett. A 147, 472 (1990)

    Article  MathSciNet  Google Scholar 

  4. Eleonskii, V.E., Krichever, I.M., Kulagin, N.E.: Rational mutlisoliton solutions of the nonlinear Schrödinger equation. Soviet Doklady. Sect. Math. Phys. 287, 226 (1986)

    Google Scholar 

  5. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Article  Google Scholar 

  6. Deng, Z.H., Wu, T., Tang, B., Wang, X.Y., Zhao, H.P., Deng, K.: Breathers and rogue waves in a ferromagnetic thin film with the Dzyaloshinskii–Moriya interaction. Eur. Phys. J. Plus 133, 450 (2018)

    Article  Google Scholar 

  7. Hu, X.B.: Rational solutions of integrable equations via nonlinear superposition formulae. J. Phys. A: Math. Gen. 30, 8225 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ohta, Y., Yang, J.K.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. Lond. Sect. A 468, 1716 (2012)

    Article  MATH  Google Scholar 

  9. Ohta, Y., Yang, J.K.: Rogue waves in the Davey-Stewartson I equation. Phys. Rev. E 86, 036604 (2012)

    Article  Google Scholar 

  10. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 1975 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, X.E., Chen, Y.: Rogue wave and a pair of resonance stripe solitons to a re duce d (3+1)-dimensional Jimbo-Miwa equation. Commun. Nonlinear Sci. Numer. Simul. 52, 24 (2017)

    Article  MathSciNet  Google Scholar 

  12. Zhang, X.E., Chen, Y., Tang, X.Y.: Rogue wave and a pair of resonance stripe solitons to KP equation. Comput. Math. Appl. 76, 1938 (2018)

    Article  MathSciNet  Google Scholar 

  13. Zhang, X.E., Chen, Y.: Deformation rogue wave to the (2+1)-dimensional KdV equation. Nonlinear Dyn. 90, 755 (2017)

    Article  MathSciNet  Google Scholar 

  14. Zhao, H.Q., Ma, W.X.: Mixed lump-kink solutions to the KP equation. Comput. Math. Appl. 74, 1399 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, J.B., Ma, W.X.: Mixed lump-kink solutions to the BKP equation. Comput. Math. Appl. 74, 591 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma, W.X., Qin, Z.Y., Lv, X.: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84, 923 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, J.Y., Ma, W.X.: Lump solutions to the BKP equation by symbolic computation. Int. J. Mod. Phys. B 30, 1640028 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, C.J.: Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation. Nonlinear Dyn. 84, 697 (2016)

    Article  MathSciNet  Google Scholar 

  19. Zhang, H.Q., Ma, W.X.: Lump solutions to the (2+1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 87, 2305 (2017)

    Article  MathSciNet  Google Scholar 

  20. Zhang, Y., Dong, H.H., Zhang, X.E., Yang, H.W.: Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation. Comput. Math. Appl. 73, 246 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, M.D., Li, X., Wang, Y., Li, B.: A pair of resonance stripe solitons and lump solutions to a reduced (3+1)-dimensional nonlinear evolution equation. Commun. Theor. Phys. 67, 595 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tang, Y.N., Tao, S.Q., Zhou, M.L., Guan, Q.: Interaction solutions between lump and other solitons of two classes of nonlinear evolution equations. Nonlinear Dyn. 89, 429 (2017)

    Article  MathSciNet  Google Scholar 

  23. Peng, W.Q., Tian, S.F., Zou, L., Zhang, T.T.: Characteristics of the solitary waves and lump waves with interaction phenomena in a (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation. Nonlinear Dyn. 93, 1841 (2018)

    Article  MATH  Google Scholar 

  24. Wang, Y.H., Wang, H., Dong, H.H., Zhang, H.S., Temuer, C.: Interaction solutions for a reduced extended (3+1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 92, 487 (2018)

    Article  Google Scholar 

  25. Zhang, Y., Liu, Y.P., Tang, X.Y.: M-lump and interactive solutions to a (3+1)-dimensional nonlinear system. Nonlinear Dyn. 93, 2533 (2018)

    Article  MATH  Google Scholar 

  26. Wang, H.: Lump and interaction solutions to the (2+1)-dimensional Burgers equation. Appl. Math. Lett. 85, 27 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Deng, Z.H., Chang, X., Tan, J.N., Tang, B., Deng, K.: Characteristics of the lumps and stripe solitons with interaction phenomena in the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Int. J. Theor. Phys. 58, 92 (2019)

    Article  Google Scholar 

  28. Lou, S.Y., Lin, J.: Rogue waves in nonintegrable KdV-type systems. Chin. Phys. Lett. 35, 050202 (2018)

    Article  Google Scholar 

  29. Jia, M., Lou, S.Y.: Lump, lumpoff and predictable instanton/rogue wave solutions to KP equation. preprint, arXiv:1803.01730v1 [nlin .SI] (2018)

  30. Ding, J., Wu, T., Chang, X., Tang, B.: Modulational instability and discrete breathers in a nonlinear helicoidal lattice model. Commun. Nonlinear Sci. Numer. Simul. 59, 349 (2018)

    Article  MathSciNet  Google Scholar 

  31. Tang, B., Deng, K.: Discrete breathers and modulational instability in a discrete \(\phi ^4\) nonlinear lattice with next-nearest-neighbor couplings. Nonlinear Dyn. 88, 2417 (2017)

    Article  MathSciNet  Google Scholar 

  32. Su, W., Xie, J., Wu, T., Tang, B.: Modulational instability, quantum breathers and two-breathers in a frustrated ferromagnetic spin lattice under an external magnetic field. Chin. Phys. B 27, 097501 (2018)

    Article  Google Scholar 

  33. Tang, B., Li, G.L., Fu, M.: Modulational instability and localized modes in Heisenberg ferromagnetic chains with single-ion easy-axis anisotropy. J. Magn. Magn. Mater. 426, 429 (2017)

    Article  Google Scholar 

  34. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  35. Mikhailov, A.V.: Integrability of a two-dimensional generalization of the Toda chain. JETP Lett. 30, 414 (1979)

    Google Scholar 

  36. Hirota, R., Ito, M., Kako, F.: Two-dimensional Toda lattice equations. Prog. Theor. Phys. Suppl. 94, 42 (1988)

    Article  MathSciNet  Google Scholar 

  37. Hirota, R., Ohta, Y., Satsuma, J.: Wronskian structures of solutions for soliton equations. Prog. Theor. Phys. Suppl. 94, 59 (1988)

    Article  MathSciNet  Google Scholar 

  38. Hu, X.B.: Nonlinear superposition formulae for the differential-difference analogue of the KdV equation and two-dimensional Toda equation. J. Phys. A. Math. Gen. 27, 201 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nimmo, J.J.C., Willox, R.: Darboux transformations for the two-dimensional Toda system. Proc. R. Soc. Lond. A 453, 2497 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Villarroel, J.: On the solution of the inverse problem for the Toda chain. Siam J. Appl. Math. 59, 261 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ma, W.X.: An application of the Casoratian technique to the 2D Toda lattice equation. Mod. Phys. Lett. B 22, 1815 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF of China under Grant Nos. 11705077 and 11775104, and National College Students’ innovation and entrepreneurship training program (201810352004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Chen, J. & Chen, Q. Mixed lump–soliton solutions to the two-dimensional Toda lattice equation via symbolic computation. Nonlinear Dyn 96, 1531–1539 (2019). https://doi.org/10.1007/s11071-019-04869-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04869-y

Keywords

Navigation