Skip to main content
Log in

Study on the dynamics of a lock-up mass damper: asymptotic analysis and application limits

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Tuned mass dampers are useful devices for limiting vibrations in various machines. Their main advantage is that they can be used as add-on elements and do not require integration into the main structure. However, conventional tuned mass dampers that use viscous or material damping are not attractive from the energetic point of view because they also dissipate energy in the case of unobjectionable small vibrations. Dry friction used as a lock-up element for the tuned mass damper could aid in overcoming this disadvantage. The dynamics of such a system are investigated in this paper. A special analytic technique based on variables’ rescaling is applied to obtain approximate analytical predictions of the steady-state amplitudes for both the main system and the mass damper. The results show that the lock-up mass damper can efficiently limit the amplitudes at resonance for a wide range of parameters but cannot supply perfect vibration suppression at any tuned frequency. Additionally, the efficiency of the system is limited to a certain excitation range. Excitation that increases over a certain threshold leads to notably high vibration amplitudes that cannot be handled by the described simple approach. All analytical results are confirmed by numerical simulations of the full system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alspaugh, A.: Analysis of Coulomb friction vibration dampers. J. Sound Vib. 57(1), 65–78 (1978)

    Article  Google Scholar 

  2. Feeny, B., Guran, A., Hinrichs, N., Popp, K.: A historical review on dry friction and stick-slip phenomena. Appl. Mech. Rev. 51(5), 321–341 (1998)

    Article  Google Scholar 

  3. Ferri, A.: Friction damping and isolation systems. Trans. ASME J. Vib. Acoust. 117B, 196–206 (1995)

    Article  Google Scholar 

  4. Popp, K., Panning, L., Sextro, W.: Vibration damping by friction forces: theory and applications. J. Vib. Control 9(3–4), 419–448 (2003)

    Article  MATH  Google Scholar 

  5. Den Hartog, J.: Forced vibrations with combined Coulomb and viscous friction. Trans. ASME 53, 107–115 (1931). APM-53-9

    MATH  Google Scholar 

  6. Shaw, S.: On the dynamic response of a system with dry friction. J. Sound Vib. 108(2), 305–325 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ruzicka, J.E., Derby, T.F.: Influence of Damping in Vibration Isolation. No. SVM-7. Shock and Vibration Information Center (Defense), Washington DC (1971)

  8. Gaul, L., Lenz, J.: Nonlinear dynamics of structures assembled by bolted joints. Acta Mech. 125(1–4), 169–181 (1997)

    Article  MATH  Google Scholar 

  9. Gaul, L., Nitsche, R.: The role of friction in mechanical joints. ASME. Appl. Mech. Rev. 54(2), 93–106 (2001)

    Article  Google Scholar 

  10. Kruse, S., Tiedemann, M., Zeumer, B., Reuss, P., Hetzler, H., Hoffmann, N.: The influence of joints on friction induced vibration in brake squeal. J. Sound Vib. 340, 239–252 (2015)

    Article  Google Scholar 

  11. Panovko, Y.G., Gubanova, I.I.: Stability and Oscillations of Elastic Systems; Paradoxes, Fallacies and New Concepts. Consultants Bureau, New York (1965)

    MATH  Google Scholar 

  12. Fidlin, A., Lobos, M.: On the limiting of vibrations amplitudes by a sequential friction-spring element. J. Sound Vib. 333, 5970–5979 (2014)

    Article  Google Scholar 

  13. Bhaskararao, A., Jangid, R.: Harmonic response of adjacent structures connected with a friction damper. J. Sound Vib. 292(1–3), 710–725 (2005)

    Google Scholar 

  14. Hetzler, H.: On the effect of nonsmooth Coulomb damping on flutter-type self-excitation in a non-gyroscopic circulatory 2-DOF-system. Nonlinear Dyn. 73(3), 1829–1847 (2013)

    Article  MathSciNet  Google Scholar 

  15. Fidlin, A.: On the dynamics of a lock-up mass damper. In: 88th Annual Meeting of the International Association of Applied Mathematics and Mechanics, March 6–10, 2017, Weimar, Germany, Book of Abstracts.https://www.tu-ilmenau.de/fileadmin/media/analysis/trunk/170304_BoA_GAMM_2017.pdf

  16. Aramendiz, J., Fidlin, A.: Analysis of a lock-up mass damper via averaging methods of second order. In: 89th Annual Meeting of the International Association of Applied Mathematics and Mechanics, March 19–23, 2018, Munich, Germany, Book of Abstracts. http://jahrestagung.gamm-ev.de/images/2018/book_of_abstracts.pdf

  17. Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (1985)

    Book  MATH  Google Scholar 

  18. Fidlin, A.: Nonlinear Oscillations in Mechanical Engineering. Springer, Berlin (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG German Research Foundation Grant FI 1761/2-1 within the Priority Program SPP 1897 “Calm, Smooth and Smart—Novel Approaches for Influencing Vibrations by Means of Deliberately Introduced Dissipation.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Fidlin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Appendix A: Formal averaging procedure

Appendix A: Formal averaging procedure

Equations (13) and (14) can be written in the following compact form:

$$\begin{aligned} {x}'= & {} \varepsilon X_1 \left( {x,{\tilde{A}},\psi } \right) +\varepsilon ^{2}X_2 \left( {x,{\tilde{A}},\psi } \right) \nonumber \\ {\psi }'= & {} p+\varepsilon \Psi _1 \left( {x,{\tilde{A}},\psi } \right) +\varepsilon ^{2}\Psi _2 \left( {x,{\tilde{A}},\psi } \right) \nonumber \\ x= & {} \left[ {A,\gamma ,B,\theta } \right] ^{\mathrm{T}} \end{aligned}$$
(A.1)

It is useful for further analysis to convert to \(\psi \) as the independent variable:

$$\begin{aligned} \frac{\hbox {d}x}{\hbox {d}\psi }=\frac{\varepsilon X_1 \left( {x,{\tilde{A}},\psi } \right) +\varepsilon ^{2}X_2 \left( {x,{\tilde{A}},\psi } \right) }{p+\varepsilon \Psi _1 \left( {x,{\tilde{A}},\psi } \right) +\varepsilon ^{2}\Psi _2 \left( {x,{\tilde{A}},\psi } \right) } \end{aligned}$$
(A.2)

Retaining the terms of \(O\left( {\varepsilon ^{2}} \right) \), the following equation can be obtained:

$$\begin{aligned}&\frac{\hbox {d}x}{\hbox {d}\psi }=\varepsilon \frac{X_1 \left( {x,{\tilde{A}},\psi } \right) }{p}\nonumber \\&\qquad +\varepsilon ^{2}\left( \frac{X_2 \left( {x,{\tilde{A}},\psi } \right) }{p}-\frac{X_1 \left( {x,{\tilde{A}},\psi } \right) \Psi _1 \left( {x,{\tilde{A}},\psi } \right) }{p^{2}} \right) \nonumber \\ \end{aligned}$$
(A.3)

Second-order averaging means applying the following nearly identical variable transformation:

(A.4)

It is common within the averaging procedure to require that the new variables \(\xi \) fulfill the following autonomous equations (functions \(\varXi \) must be determined within the procedure later):

$$\begin{aligned}&\frac{\hbox {d}\xi }{\hbox {d}\psi }=\varepsilon \varXi _1 \left( {\xi ,\tilde{\bar{{A}}}} \right) +\varepsilon ^{2}\varXi _2 \left( {\xi ,\tilde{\bar{{A}}}} \right) +O(\varepsilon ^{3}) \nonumber \\&\frac{\hbox {d}\tilde{\bar{{A}}}}{\hbox {d}\psi }=\varepsilon \varXi _{1,{\tilde{A}}} \left( {\xi ,\tilde{\bar{{A}}}} \right) +\varepsilon ^{2}\varXi _{2,{\tilde{A}}} \left( {\xi ,\tilde{\bar{{A}}}} \right) +O(\varepsilon ^{3})\nonumber \\ \end{aligned}$$
(A.5)

Substituting (A.4) into Eq. (A.3), applying Taylor series expansion, considering (A.5) and balancing terms with the same powers of \(\varepsilon \) leads to the following equations:

$$\begin{aligned}&\frac{{X_{1} \left( {\xi ,\tilde{\bar{A}},\psi } \right) }}{p} = \varXi _{1} \left( {\xi ,\tilde{\bar{A}}} \right) + \frac{{\partial u_{1} \left( {\xi ,\tilde{\bar{A}},\psi } \right) }}{{\partial \psi }} \end{aligned}$$
(A.6)
$$\begin{aligned}&\frac{{X_{2} \left( {\xi ,\tilde{\bar{A}},\psi } \right) }}{p} - \frac{{X_{1} \left( {\xi ,\tilde{\bar{A}},\psi } \right) \Psi _{1} \left( {\xi ,\tilde{\bar{A}},\psi } \right) }}{{p^{2} }} \nonumber \\&\quad \quad + \frac{1}{p}\left. {\frac{{\partial X_{1} \left( {x,\tilde{A},\psi } \right) }}{{\partial x}}} \right| {\mathop {\mathop {}\limits _{x = \xi }}\limits _{\tilde{A} = \tilde{\bar{A}}}} u_{1} (\xi ,\tilde{\bar{A}},\psi )\nonumber \\&\quad \quad + \frac{1}{p}\left. {\frac{{\partial X_{1} \left( {x,\tilde{A},\psi } \right) }}{{\partial \tilde{A}}}} \right| {\mathop {\mathop {}\limits _{x = \xi }}\limits _{\tilde{A} = \tilde{\bar{A}}}} u_{{1,\tilde{A}}} \left( {\xi ,\tilde{\bar{A}},\psi } \right) \nonumber \\&\quad = \varXi _{2} \left( {\xi ,\tilde{\bar{A}}} \right) + \frac{{\partial u_{1} \left( {\xi ,\tilde{\bar{A}},\psi } \right) }}{{\partial \xi }}\varXi _{1} \left( {\xi ,\tilde{\bar{A}}} \right) \nonumber \\&\qquad + \frac{{\partial u_{1} \left( {\xi ,\tilde{\bar{A}},\psi } \right) }}{{\partial \tilde{\bar{A}}}}\varXi _{{1,\tilde{A}}} \left( {\xi ,\tilde{\bar{A}}} \right) + \frac{{u_{2} \left( {\xi ,\tilde{\bar{A}},\psi } \right) }}{{\partial \psi }}\nonumber \\ \end{aligned}$$
(A.7)

The function \(u_1 \left( {\xi ,\tilde{\bar{{A}}},\psi } \right) \) must be limited in the fast variable \(\psi \). This requirement enables us to determine the function \(\varXi _1 \):

$$\begin{aligned}&\varXi _1 \left( {\xi ,\tilde{\bar{{A}}}} \right) =\frac{1}{2\pi }\int _0^{2\pi } {\frac{X_1 \left( {\xi ,\tilde{\bar{{A}}},\psi } \right) }{p}d\psi } \nonumber \\&\quad =\frac{1}{p}\left\langle {X_1 \left( {\xi ,\tilde{\bar{{A}}},\psi } \right) } \right\rangle _\psi \nonumber \\&u_1 \left( {\xi ,\tilde{\bar{{A}}},\psi } \right) =u_{01} \left( {\xi ,\tilde{\bar{{A}}}} \right) \nonumber \\&\qquad +\int _{\psi _0 }^\psi {\frac{X_1 \left( {\xi ,\tilde{\bar{{A}}},\psi } \right) }{p}d\psi } -\varXi _1 \left( {\xi ,\tilde{\bar{{A}}}} \right) \left( {\psi -\psi _0 } \right) \nonumber \\ \end{aligned}$$
(A.8)

In this work, \(\left\langle \ldots \right\rangle _\psi \) means periodic averaging with respect to the variable \(\psi \). Note that the scaling of the variable A according to (8) is also valid for the corresponding u-terms:

$$\begin{aligned} u_{1,A} \left( {\xi ,\tilde{\bar{{A}}},\psi } \right) =\varepsilon u_{1,{\tilde{A}}} \left( {\xi ,\tilde{\bar{{A}}},\psi } \right) \end{aligned}$$
(A.9)

The function \(\varXi _2 \) is determined similarly from Eq. (A.7) combined with the requirement that the function \(u_2 \) must be limited in \(\psi \):

$$\begin{aligned}&\varXi _2 \left( {\xi ,\tilde{\bar{{A}}}} \right) =\left\langle {\frac{X_2 \left( {\xi ,\tilde{\bar{{A}}},\psi } \right) }{p}} \right\rangle _\psi \nonumber \\&\quad -\left\langle {\frac{X_1 \left( {\xi ,\tilde{\bar{{A}}},\psi } \right) \Psi _1 \left( {\xi ,\tilde{\bar{{A}}},\psi } \right) }{p^{2}}} \right\rangle _\psi \nonumber \\&\quad +\left\langle {\frac{1}{p}\left. {\frac{\partial X_1 \left( {x,{\tilde{A}},\psi } \right) }{\partial x}} \right| {\mathop {\mathop {}\limits _{x=\xi }}\limits _{{\tilde{A}}=\tilde{\bar{{A}}}}} u_1 \left( {\xi ,\tilde{\bar{{A}}},\psi } \right) } \right\rangle _\psi \nonumber \\&\quad +\left\langle {\frac{1}{p}\left. {\frac{\partial X_1 \left( {x,{\tilde{A}},\psi } \right) }{\partial {\tilde{A}}}} \right| {\mathop {\mathop {}\limits _{x=\xi }}\limits _{{\tilde{A}}=\tilde{\bar{{A}}}}} u_{1,{\tilde{A}}} \left( {\xi ,\tilde{\bar{{A}}},\psi } \right) } \right\rangle _\psi \nonumber \\ \end{aligned}$$
(A.10)

It is not necessary to calculate \(u_2 \) explicitly if the analysis is limited to the second-order approximation.

Substituting expressions (A.8) and (A.10) into Eq. (A.5) and setting the right-hand side to zero give the algebraic equations that determine the steady-state solutions of the averaged equations:

$$\begin{aligned} 0= & {} \varepsilon \varXi _1 \left( {\xi ,\tilde{\bar{{A}}}} \right) +\varepsilon ^{2}\varXi _2 \left( {\xi ,\tilde{\bar{{A}}}} \right) =\Gamma \left( {\xi ,\tilde{\bar{{A}}},\varepsilon } \right) \nonumber \\ \xi= & {} \left[ {\bar{{A}},\bar{{\gamma }},\bar{{B}},\bar{{\theta }}} \right] ^{\mathrm{T}} =\xi _1 +\varepsilon \xi _2 =\left[ {A_1 ,\gamma _1 ,B_1 ,\theta _1 } \right] ^{\mathrm{T}} \nonumber \\&+\,\varepsilon \left[ {A_2 ,\gamma _2 ,B_2 ,\theta _2 } \right] ^{\mathrm{T}}\nonumber \\ \tilde{\bar{{A}}}= & {} {\tilde{A}}_1 +\varepsilon {\tilde{A}}_2 \end{aligned}$$
(A.11)

These equations have been solved in an asymptotic manner by balancing the terms with the same powers of \(\varepsilon \). This approach delivers the following two sets of four algebraic equations each, thus determining the required approximations:

$$\begin{aligned}&\varXi _1 (\xi _1 ,{\tilde{A}}_1 )=0 \end{aligned}$$
(A.12)
$$\begin{aligned}&\varXi _2 \left( {\xi _1 ,{\tilde{A}}_1 } \right) +\left. {\frac{\partial \varXi _1 \left( {\xi ,\tilde{\bar{{A}}}} \right) }{\partial \xi }} \right| _{\varepsilon =0} \xi _2 \nonumber \\&\quad +\left. {\frac{\partial \varXi _1 \left( {\xi ,\tilde{\bar{{A}}}} \right) }{\partial \tilde{\bar{{A}}}}} \right| _{\varepsilon =0} {\tilde{A}}_2 =0 \end{aligned}$$
(A.13)

The first set leads directly to the stationary solutions (15). The second set delivers the solutions used to calculate the black solid lines in Fig. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fidlin, A., Aramendiz, J. Study on the dynamics of a lock-up mass damper: asymptotic analysis and application limits. Nonlinear Dyn 97, 1867–1875 (2019). https://doi.org/10.1007/s11071-018-4662-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4662-7

Keywords

Navigation