Skip to main content
Log in

Fundamental insight on the performance of a nonlinear tuned mass damper

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

To try and enhance the performance of a tuned mass damper, nonlinear stiffness can be introduced to good use. In this paper, an investigation is performed on the characteristics of a nonlinear tuned mass damper when attached to a linear oscillator. The whole system is modelled as a two degree-of-freedom system with cubic stiffness nonlinearity, and the effect of the nonlinearity and mass ratio of the attachment is investigated for both a softening and a hardening stiffness characteristics, using an analytical formulation. The corresponding linear case is presented as a benchmark, and the main critical issues are discussed. Depending on the frequency to which the vibration reduction is desired, recommendations are highlighted for proper tuning and parameters selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  2. Nayfeh AH, Balachandran B (1995) Applied nonlinear dynamics. Wiley, New York

    Book  MATH  Google Scholar 

  3. Jiang X, Mcfarland DM, Bergman LA, Vakakis AF (2003) Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dyn 33:87–102

    Article  MATH  Google Scholar 

  4. Kerschen G, Vakakis AF, Lee YS, Mcfarland DM, Kowtko JJ, Bergman LA (2005) Energy transfers in a system of two coupled oscillators with essential nonlinearity: 1:1 resonance manifold and transient bridging orbits. Nonlinear Dyn 42:283–303

    Article  MathSciNet  MATH  Google Scholar 

  5. Gourdon E, Alexander NA, Taylor CA, Lamarque CH, Pernot S (2007) Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J Sound Vib 300:522–551

    Article  ADS  Google Scholar 

  6. Malatkar P, Nayfeh AH (2007) Steady-state dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator. Nonlinear Dyn 47:67–179

    MATH  Google Scholar 

  7. Starosvetsky Y, Gendelman OV (2009) Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J Sound Vib 324:916–939

    Article  ADS  Google Scholar 

  8. Zhu SJ, Zheng YF, Fu YM (2004) Analysis of non-linear dynamics of a two-degree-of-freedom vibration system with non-linear damping and non-linear spring. J Sound Vib 271:15–24

    Article  ADS  Google Scholar 

  9. Gendelman OV, Starosvetsky Y, Feldman M (2008) Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes. Nonlinear Dyn 51:31–46

    Article  MATH  Google Scholar 

  10. Starosvetsky Y, Gendelman OV (2008) Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: optimization of a nonlinear vibration absorber. Nonlinear Dyn 51:47–57

    Article  MATH  Google Scholar 

  11. Shaw J, Shaw SW, Haddow AG (1989) On the response of the non-linear vibration absorber. Int J Nonlinear Mech 24:281–293

    Article  MATH  Google Scholar 

  12. Alexander NA, Schilder F (2009) Exploring the performance of a nonlinear tuned mass damper. J Sound Vib 319:445–462

    Article  ADS  Google Scholar 

  13. Gatti G, Brennan MJ (2011) On the effects of system parameters on the response of a harmonically excited system consisting of weakly coupled nonlinear and linear oscillators. J Sound Vib 330:4538–4550

    Article  ADS  Google Scholar 

  14. Brennan MJ, Gatti G (2012) The characteristics of a nonlinear vibration neutralizer. J Sound Vib 331:3158–3171

    Article  ADS  Google Scholar 

  15. Ibrahim RA (2008) Recent advances in nonlinear passive vibration isolators. J Sound Vib 314:371–452

    Article  ADS  Google Scholar 

  16. Kurt M, Eriten M, McFarland DM, Bergman LA, Vakakis AF (2014) Frequency–energy plots of steady-state solutions for forced and damped systems, and vibration isolation by nonlinear mode localization. Commun Nonlinear Sci Numer Simul 19(8):2905–2917

    Article  ADS  MathSciNet  Google Scholar 

  17. Kurt M, Slavkin I, Eriten M, McFarland DM, Gendelman OV, Bergman LA, Vakakis AF (2014) Effect of 1:3 resonance on the steady-state dynamics of a forced strongly nonlinear oscillator with a linear light attachment. Arch Appl Mech 84(8):1189–1203

    Article  Google Scholar 

  18. Ledzema-Ramirez DF, Ferguson NS, Brennan MJ, Tang B (2015) An experimental nonlinear low dynamic stiffness device for shock isolation. J Sound Vib 347:1–13

    Article  ADS  Google Scholar 

  19. Detroux T, Habib G, Masset L, Kerschen G (2015) Performance, robustness and sensitivity analysis of the nonlinear tuned vibration absorber. Mech Syst Signal Pr 60–61:799–809

    Article  Google Scholar 

  20. Gatti G (2016) Uncovering inner detached resonance curves in coupled oscillators with nonlinearity. J Sound Vib 372:239–254

    Article  Google Scholar 

  21. Habib G, Detroux T, Viguié R, Kerschen G (2015) Nonlinear generalization of Den Hartog’s equal-peak method. Mech Syst Signal Pr 52–53:17–28

    Article  Google Scholar 

  22. Korn GA, Korn TM (1961) Mathematical handbook for scientists and engineers. McGraw-Hill, New York

    MATH  Google Scholar 

  23. Gatti G, Kovacic I, Brennan MJ (2010) On the response of a harmonically excited two degree-of-freedom system consisting of a linear and a non-linear quasi-zero stiffness oscillator. J Sound Vib 329:1823–1835

    Article  ADS  Google Scholar 

  24. Gatti G, Brennan MJ (2017) Inner detached frequency response curves: an experimental study. J Sound Vib 396:246–254

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Gatti.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Appendix

Appendix

Coefficients for the polynomial equation reported in Eq. (14)

$$\begin{aligned} a^{*} & = 1 \\ b^{*} & = 3W^{2} \gamma \left( {1 + \mu } \right) + 2\left( {1 + 2\varOmega^{2} + \left( {1 + \mu } \right)\varOmega_{0}^{2} } \right) \\ c^{*} & = 1 + \frac{27}{16}W^{4} \gamma^{2} \left( {1 + \mu } \right)^{2} + 2\varOmega^{2} + 6\varOmega^{4} + 2\left( {2 + \mu + \left( {1 + \mu } \right)\varOmega^{2} } \right)\varOmega_{0}^{2} \\ & \quad +\, \cdots \left( {1 + \mu } \right)^{2} \varOmega_{0}^{4} + 3W^{2} \gamma \left( {2 + \mu + \left( {1 + \mu } \right)\varOmega_{{}}^{2} + \left( {1 + \mu } \right)^{2} \varOmega_{0}^{2} } \right) \\ d^{*} & = \frac{27}{8}W^{4} \gamma^{2} \left( {1 + \mu + \left( {1 + \mu } \right)^{2} \varOmega_{{}}^{2} } \right) + 3W^{2} \gamma \left( {1 - \left( {1 + \mu } \right)\varOmega^{4} + 2\left( {1 + \mu } \right)\varOmega_{0}^{2} + 2\varOmega^{2} \left( { - 2 + \mu + \left( {1 + \mu } \right)^{2} \varOmega_{0}^{2} } \right)} \right) \\ & \quad +\, \cdots 2\left( {2\varOmega_{{}}^{6} + \varOmega_{0}^{2} + \left( {1 + \mu } \right)\varOmega_{0}^{4} - \varOmega^{4} \left( {1 + \left( {1 + \mu } \right)\varOmega_{0}^{2} } \right) + \varOmega^{2} \left( {1 + 2\left( { - 2 + \mu } \right)\varOmega_{0}^{2} + \left( {1 + \mu } \right)^{2} \varOmega_{0}^{4} } \right)} \right) \\ e^{*} & = \frac{27}{16}W^{4} \gamma^{2} \left( { - 1 + \left( {1 + \mu } \right)\varOmega_{{}}^{2} } \right)^{2} + \left( {\varOmega^{4} + \varOmega_{0}^{2} - \varOmega^{2} \left( {1 + \left( {1 + \mu } \right)\varOmega_{0}^{2} } \right)} \right)^{2} \\ & \quad +\, \cdots 3W^{2} \gamma \left( { - 1 + \left( {1 + \mu } \right)\varOmega_{{}}^{2} } \right) \times \left( { - \varOmega^{4} - \varOmega_{0}^{2} + \varOmega^{2} \left( {1 + \left( {1 + \mu } \right)\varOmega_{0}^{2} } \right)} \right) \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatti, G. Fundamental insight on the performance of a nonlinear tuned mass damper. Meccanica 53, 111–123 (2018). https://doi.org/10.1007/s11012-017-0723-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0723-0

Keywords

Navigation