Skip to main content
Log in

Spatiotemporal dynamics of an NPZ model with prey-taxis and intratrophic predation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Spatiotemporal dynamics of plankton community and the nutrients in a vertical column of water are considered. In this paper, the temporal model is first researched to determine the effect of the density-dependent death rate of predator on the system dynamics. Subsequently, the influence of intraspecific predation is investigated in a spatially distributed model. The effects of this factor and the predator’s search activity on the possibility of spatial pattern formation are also analyzed. Necessary conditions for the Turing and wave instabilities are obtained through local stability analysis around the spatially homogeneous equilibrium. Numerical analysis shows that for an unequal diffusion coefficient, increasing the search activity of zooplankton results in its homogeneous vertical distribution. In addition, increasing the diffusion causes spatial heterogeneity. The stabilizing role of intraspecific predation in the spatial model is obscure. Escalating this factor can also lead to a wave instability. A similar effect on the system stability is provided by taxis in the case of equal diffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Volterra, V.: Variations and fluctuations of the number of individuals in animal species living together. In: Chapman, R.N. (ed.) Animal Ecology. McGraw-Hill, New York (1926)

    Google Scholar 

  2. Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator–prey interactions. Am. Nat. 97(895), 209–223 (1963)

    Article  Google Scholar 

  3. Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio dependence. J. Theor. Biol. 139, 311–326 (1989)

    Article  Google Scholar 

  4. Berezovskaya, F.S., Karev, G., Arditi, R.: Parametric analysis of the ratiodependent predator–prey model. J. Math. Biol. 43, 221–246 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hassell, M.P.: Arthropod Predator–Prey Systems. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  6. Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific, Singapore (1998)

    Book  Google Scholar 

  7. Svirezhev, Yu.M, Logofet, D.O.: Stability of Biological Communities. MIR Publication, Moscow (1983)

  8. Wangersky, P.J.: Lotka–Volterra population models. Ann. Rev. Ecol. Syst. 9, 189–218 (1978)

    Article  Google Scholar 

  9. Chow, P.L., Tam, W.C.: Periodic and traveling wave solutions to Volterra–Lotka equations with diffusion. Math. Biol. 38(6), 643–658 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dunbar, S.R.: Traveling wave solutions of diffusive Lotka–Volterra equations. J. Math. Biol. 17, 11–32 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Owen, M.R., Lewis, M.A.: How predation can slow, stop or reverse a prey invasion. Math. Biol. 63, 655–684 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Polis, G.A.: The evolution and dynamics of intratrophic predation. Ann. Rev. Ecol. Syst. 12, 225–251 (1981)

    Article  Google Scholar 

  13. Ruan, S., Ardito, A., Ricciardi, P., DeAngelis, D.L.: Coexistence in competition models with density-dependent mortality. C. R. Biol. 330, 845–854 (2007)

    Article  Google Scholar 

  14. Kuang, Y., Fagan, W.F., Loladze, I.: Biodiversity, habitat area, resource growth rate and interference competition. Bull. Math. Biol. 65, 497–518 (2003)

    Article  MATH  Google Scholar 

  15. Lobry, C., Harmand, J.: A new hypothesis to explain the coexistence of n species in the presence of a single resource. C. R. Biol. 329, 40–46 (2006)

    Article  Google Scholar 

  16. Kohlmeier, C., Ebenhoh, W.: The stabilizing role of cannibalism in a predator–prey system. Bull. Math. Biol. 57, 401–411 (1995)

    Article  MATH  Google Scholar 

  17. Pitchford, J., Brindley, J.: Intratrophic predation in simple predator–prey models. Bull. Math. Biol. 60, 937–953 (1998)

    Article  MATH  Google Scholar 

  18. Jang, S., Baglama, J., Seshaiyer, P.: Droop models of nutrient–plankton interaction with intratrophic predation. Appl. Math. Comput. 169(2), 1106–1128 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Zaret, T.M., Suffern, J.S.: Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21, 804–813 (1976)

    Article  Google Scholar 

  20. Bollens, S.M., Frost, B.W.: Predator induced diel vertical migration in a marine planktonic copepod. J. Plankton Res. 11, 1047–1065 (1989)

    Article  Google Scholar 

  21. McLaren, J.A.: Effect of temperature on growth of zooplankton and the adaptive value of vertical migration. J. Fish. Res. Board Can. 20, 685–727 (1963)

    Article  Google Scholar 

  22. Han, B.P., Straskraba, M.: Modeling patterns of zooplankton diel vertical migration. J. Plankton Res. 20, 1463–1487 (1998)

    Article  Google Scholar 

  23. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  24. Horstmann, D.: From 1970 until present:the Keller–Segel model in chemotaxis and its consequences I. Jahresber. DMV 105(3), 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Ivanitsky, G., Medvinsky, A., Tsyganov, M.: From disorder to order as applied to the movement of microorganisms. Adv. Phys. Sci. Am. Inst. Phys. 34(4), 289–316 (1991)

    Google Scholar 

  26. Kareiva, P., Odell, G.: Swarms of predators exhibit prey taxis if individual predators use area restricted search. Am. Nat. 130, 233–270 (1987)

    Article  Google Scholar 

  27. Turchin, P.: Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants. Sinauer Associates, Sunderland (1998)

    Google Scholar 

  28. Berezovskaya, F.S., Karev, G.P.: Bifurcations of travelling waves in population taxis models. Phys. Usp. 42, 917–929 (1999)

    Article  Google Scholar 

  29. Turing, A.M.: The chemical basis of the morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  30. Segel, L.F., Jackson, J.L.: Dissipative structure. An explanation and an ecological example. J. Theor. Biol. 37, 345–359 (1972)

    Google Scholar 

  31. Levin, S.A., Segel, L.A.: Hypothesis for origin of plankton patchiness. Nature 259, 659 (1976)

    Article  Google Scholar 

  32. Malchow, H.: Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics. Proc. R. Soc. Lond. B. 251, 103–109 (1993)

    Article  Google Scholar 

  33. Malchow, H.: Flow-and locomotion-induced pattern formation in nonlinear population dynamics. Ecol. Model. 82, 257–264 (1995)

    Article  Google Scholar 

  34. Malchow, H.: Motional instability in prey–predator system. J. Theor. Biol. 204, 639–647 (2000)

    Article  Google Scholar 

  35. Sun, G.Q., Jin, Z., Zhao, Y.G., Liu, Q.X., Li, L.: Spatial pattern in a predator–prey system with both self- and cross-diffusion. Int. J. Mod. Phys. 20(1), 71–84 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, G.,Wang, X.: Effect of diffusion and cross-diffusion in a predator-prey model with a transmissible disease in the predator species. Abstr. Appl. Anal. 2014, 167856 (2014)

  37. Tello, J.I., Wrzosek, D.: Predator–prey model with diffusion and indirect prey-taxis. Math. Models Methods Appl. Sci. 26(11), 2129–2162 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tyutyunov, Y.V., Titova, L.I., Senina, I.N.: Prey-taxis destabilizes homogeneous stationary state in spatial Gause–Kolmogorov-type model for predator–prey system. Ecol. Complex. 31, 170–180 (2017)

    Article  Google Scholar 

  39. Wang, X., Wang, W., Zhang, G.: Global bifurcation of solutions for a predator–prey model with prey-taxis. Math. Methods Appl. Sci. 38, 431–443 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, Q., Song, Y., Shao, L.J.: Nonconstant positive steady states and pattern formation of 1D prey-taxis systems. Nonlinear Sci. 27(1), 71–97 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Petrovskii, S.V., Malchow, H.: A minimal model of pattern formation in a prey–predator system. Math. Comput. Model. 29, 49–63 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Petrovskii, S.V., Malchow, H.: Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. Theor. Popul. Biol. 59, 157–174 (2001)

    Article  MATH  Google Scholar 

  43. Steele, J.H., Henderson, E.W.: A simple model for plankton patchiness. J. Plankton Res. 14, 1397–1403 (1992)

    Article  Google Scholar 

  44. Steele, J.H., Henderson, E.W.: The role of predation in plankton models. J. Plankton Res. 14, 157–172 (1992)

    Article  Google Scholar 

  45. Shi, J., Shivaji, R.: Persistence in reaction diffusion models with weak Allee effect. J. Math. Biol. 52, 807–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lee, J.M., Hillen, T., Lewis, M.A.: Pattern formation in prey-taxis systems. J. Biol. Dyn. 3(6), 551–573 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sun, G.Q.: Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85(1), 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  48. Edwards, A.M., Brindley, J.: Oscillatory behaviour in a three component plankton population model. Dyn. Stabil. Syst. 11, 347–370 (1996)

    Article  MATH  Google Scholar 

  49. Dueria, S., Dahllöf, I., Hjorth, M., Marinova, D., Zaldívara, J.M.: Modeling the combined effect of nutrients and pyrene on the plankton population: validation using mesocosm experiment data and scenario analysis. Ecol. Model. 220, 2060–2067 (2009)

    Article  Google Scholar 

  50. Charria, G., Dadou, I., Llido, J., Drevillon, M., Garcon, V.: Importance of dissolved organic nitrogen in the North Atlantic ocean in sustaining primary production: a 3D modeling approach. Biogeosciences 5, 1437–1455 (2008)

    Article  Google Scholar 

  51. Fasham, M.J.R., Ducklow, H.W., McKelvie, S.M.: A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res. 48, 591–639 (1990)

    Article  Google Scholar 

  52. Montoya, J.P., Voss, M., Capone, D.G.: Spatial variation in N2-fixation rate and diazotroph activity in the tropical Atlantic. Biogeosciences 4, 369–376 (2007)

    Article  Google Scholar 

  53. Zhichao, Pu, Cortez, Michael H., Jiang, Lin: Predator-prey coevolution drives productivity-richness relationships in planktonic systems. Am. Nat. 189, 28–42 (2017)

    Article  Google Scholar 

  54. Gabric, A., Murray, N., Stone, L., Kohl, M.: Modelling the production of dimethylsulfide during a phytoplankton bloom. J. Geophys. Res. 98, 22805–22816 (1993)

    Article  Google Scholar 

  55. Edwards, C.A., Batchelder, H.P., Powell, T.M.: Modelling microzooplankton and macrozooplankton dynamics within a coastal upwelling system. J. Plankton Res. 22, 1619–1648 (2000)

    Article  Google Scholar 

  56. Edwards, C.A., Brinley, J.: Zooplankton mortality and the dynamical behavior of plankton population models. Bull. Math. Biol. 61, 303–339 (1999)

    Article  MATH  Google Scholar 

  57. Malchow, H., Petrovskii, S.V., Venturino, E.: Spatiotemporal Patterns in Ecology and Epidemiology—Theory, Models, and Simulation, Mathematical and Computational Biology Series. Chapman & Hall, Boca Raton (2008)

    MATH  Google Scholar 

  58. Goursat, E.: Cows d’Analyse Mathimatique, vol. 11, 5th edn. Gauthier Villars, Paris (1933)

    Google Scholar 

  59. Rovinsky, A.B., Menzinger, M.: Chemical instability induced by a differential flow. Phys. Rev. Lett. 69, 1193–1196 (1992)

    Article  Google Scholar 

  60. Scheffer, M.: Fish and nutrients interplay determines algal biomass: a minimal model. OIKOS 62, 271–282 (1991)

    Article  Google Scholar 

  61. Medvinskii, A.B., Petrovskii, S.V., Tikhonova, I.A., Tikhonov, D.A., Li, B.-L., Venturino, E., Malchow, H., Ivanitskii, G.R.: Spatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics. Phys. Usp. 45(1), 27–57 (2002)

    Article  Google Scholar 

  62. Ozmidov, R.V.: Admixture Diffusion in the Ocean. Gidrometeoizdat, Leningrad (1986)

    Google Scholar 

  63. de Roos, A.M., McCauley, E., Wilson, W.G.: Mobility versus density-limited predator–prey dynamics of different spatiall scales. Proc. R. Soc. Lond. B 246, 117–122 (1991)

    Article  Google Scholar 

  64. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(3), 851 (1993)

    Article  MATH  Google Scholar 

  65. Banerjee, M., Abbas, S.: Existence and non-existence of spatial patterns in a ratio-dependent predator–prey model. Ecol. Complex. 21, 199–214 (2015)

    Article  Google Scholar 

  66. Huisman, J., Weissing, F.J.: Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999)

    Article  Google Scholar 

  67. Petrovskii, S., Li, B.L., Malchow, H.: Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complex. 1(1), 37–47 (2004)

    Article  Google Scholar 

  68. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  69. Sun, G.Q., Wang, C.H., Chang, L.L., Wu, Y.P., Li, L., Jin, Z.: Effects of feedback regulation on vegetation patterns in semi-arid environments. Appl. Math. Model. 61, 200–215 (2018)

    Article  MathSciNet  Google Scholar 

  70. Sun, G.Q., Wu, Z.Y., Wang, Z., Jin, Z.: Influence of isolation degree of spatial patterns on persistence of populations. Nonlinear Dyn. 83(1–2), 811–819 (2016)

    Article  MathSciNet  Google Scholar 

  71. Guin, L.N.: Existence of spatial patterns in a predator–prey model with self-and cross-diffusion. Appl. Math. Comput. 226, 320–335 (2014)

    MathSciNet  MATH  Google Scholar 

  72. Banerjee, M., Volpert, V.: Spatio-temporal pattern formation in Rosenzweig–MacArthur model: effect of nonlocal interactions. Ecol. Complex. 30, 2–10 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Russian Foundation for Fundamental Research (Grant No. 18-01-00213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniya Giricheva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giricheva, E. Spatiotemporal dynamics of an NPZ model with prey-taxis and intratrophic predation. Nonlinear Dyn 95, 875–892 (2019). https://doi.org/10.1007/s11071-018-4601-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4601-7

Keywords

Navigation