Skip to main content
Log in

An inclined cable excited by a non-ideal massive moving deck: an asymptotic formulation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A moving deck is an important (kinematic) excitation source for the inclined cable in cable-stayed bridges. In ideal cases, the deck motion is assumed to be harmonic oscillation and cable’s dynamic effects on the deck are neglected. As a refined version, an inclined cable excited by a massive non-ideal moving deck, i.e., the deck’s oscillation, is slowly modulated by the cable and thus not exactly harmonic is investigated in an asymptotically coupled formulation for understanding cable–deck dynamic interactions. More explicitly, by ordering the deck/cable mass ratio as a large parameter, the coupled system is reduced using asymptotic approximations and multi-scale expansions. After neglecting the reduced model’s nonlinear terms, firstly, cable–deck linear coupled modes are obtained, leading to two different kinds of linear modal dynamics, i.e., the cable-dominated one and the deck-dominated one, whose asymptotic characteristics are also revealed. Then cable’s forced nonlinear vibrations, excited by the deck’s modulated oscillation (i.e., non-ideal moving deck), are fully investigated. Nonlinear frequency responses of the cable–deck coupled system are found, and the dynamic effects on the cable’s periodic and quasi-periodic behaviors, due to cable–deck coupling (characterized by the deck/cable mass ratio), cable’s inclinations, and boundary damping, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. Proc. R. Soc. A 341, 299–315 (1974)

    Article  Google Scholar 

  2. Rega, G.: Nonlinear vibrations of suspended cables—part I: modeling and analysis. Appl. Mech. Rev. 57, 443–478 (2004)

    Article  Google Scholar 

  3. Ibrahim, R.A.: Nonlinear vibrations of suspended cables—part III: random excitation and interaction with fluid flow. Appl. Mech. Rev. 57, 515–549 (2004)

    Article  Google Scholar 

  4. Hagedorn, P., Schäfer, B.: On non-linear free vibrations of an elastic cable. Int. J. Non Linear Mech. 15, 333–340 (1980)

    Article  Google Scholar 

  5. Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Non Linear Mech. 19, 39–52 (1984)

    Article  Google Scholar 

  6. Benedettini, F., Rega, G., Vestroni, F.: Modal coupling in the free nonplanar finite motion of an elastic cable. Meccanica 21, 38–46 (1986)

    Article  Google Scholar 

  7. Rao, G.V., Iyengar, R.: Internal resonance and non-linear response of a cable under periodic excitation. J. Sound Vib. 149, 25–41 (1991)

    Article  Google Scholar 

  8. Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non Linear Mech. 27, 233–250 (1992)

    Article  Google Scholar 

  9. Lee, C.L., Perkins, N.C.: Nonlinear oscillations of suspended cables containing a two-to-one internal resonance. Nonlinear Dyn. 3, 465–490 (1992)

    Google Scholar 

  10. Srinil, N., Rega, G., Chucheepsakul, S.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I: theoretical formulation and model validation. Nonlinear Dyn. 48, 231–252 (2007)

    Article  Google Scholar 

  11. Pakdemirli, M., Nayfeh, S., Nayfeh, A.: Analysis of one-to-one autoparametric resonances in cables–discretization vs. direct treatment. Nonlinear Dyn. 8, 65–83 (1995)

    Article  MathSciNet  Google Scholar 

  12. Zhao, Y.Y., Wang, L.H., Chen, D.L., Jiang, L.Z.: Non-linear dynamic analysis of the two-dimensional simplified model of an elastic cable. J. Sound Vib. 255, 43–59 (2002)

    Article  Google Scholar 

  13. Zhang, W., Tang, Y.: Global dynamics of the cable under combined parametrical and external excitations. Int. J. Non Linear Mech. 37, 505–526 (2002)

    Article  Google Scholar 

  14. Lacarbonara, W., Rega, G., Nayfeh, A.H.: Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems. Int. J. Non Linear Mech. 38, 851–872 (2003)

    Article  Google Scholar 

  15. Zhao, Y.Y., Wang, L.H.: On the symmetric modal interaction of the suspended cable: three-to-one internal resonance. J. Sound Vib. 294, 1073–1093 (2006)

    Article  Google Scholar 

  16. Wang, L.H., Zhao, Y.Y.: Nonlinear interactions and chaotic dynamics of suspended cables with three-to-one internal resonances. Int. J. Solids Struct. 25, 7800–7819 (2006)

    Article  Google Scholar 

  17. Kang, H.J., Zhao, Y.Y., Zhu, H.P.: Linear and nonlinear dynamics of suspended cable considering bending stiffness. J. Vib. Control 21, 1487–1505 (2015)

    Article  MathSciNet  Google Scholar 

  18. Nayfeh, A.H., Arafat, H.N., Chin, C.-M., Lacarbonara, W.: Multimode interactions in suspended cables. J. Vib. Control 8, 337–387 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Rega, G., Lacarbonara, W., Nayfeh, A., Chin, C.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non Linear Mech. 34, 901–924 (1999)

    Article  Google Scholar 

  20. Guo, T.D., Kang, H.J., Wang, L.H., Zhao, Y.Y.: Triad mode resonant interactions in suspended cables. Sci. China Phys. Mech. Astron. 59, 1–14 (2016)

    Article  Google Scholar 

  21. Cai, Y., Chen, S.S.: Dynamics of elastic cable under parametric and external resonances. J. Eng. Mech. ASCE 120, 1786–1802 (1994)

    Article  Google Scholar 

  22. Lilien, J.L., Da Costa, A.P.: Vibration amplitudes caused by parametric excitation of cable stayed structures. J. Sound Vib. 174, 69–90 (1994)

    Article  Google Scholar 

  23. Costa, A.P.D., Martins, J., Branco, F., Lilien, J.-L.: Oscillations of bridge stay cables induced by periodic motions of deck and/or towers. J. Eng. Mech. ASCE 122, 613–622 (1996)

    Article  Google Scholar 

  24. Georgakis, C.T., Taylor, C.A.: Nonlinear dynamics of cable stays. Part 1: sinusoidal cable support excitation. J. Sound Vib. 281, 537–564 (2005)

    Article  Google Scholar 

  25. Wang, L.H., Zhao, Y.Y.: Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions. J. Sound Vib. 327, 121–133 (2009)

    Article  Google Scholar 

  26. Macdonald, J.H.G., Dietz, M.S., Neild, S.A., Gonzalez-Buelga, A., Crewe, A.J., Wagg, D.J.: Generalised modal stability of inclined cables subjected to support excitations. J. Sound Vib. 329, 4515–4533 (2010)

    Article  Google Scholar 

  27. Marsico, M.R., Tzanov, V., Wagg, D.J., Neild, S.A., Krauskopf, B.: Bifurcation analysis of a parametrically excited inclined cable close to two-to-one internal resonance. J. Sound Vib. 330, 6023–6035 (2011)

    Article  Google Scholar 

  28. Li, H.N., Shi, W.L., Wang, G.X., Jia, L.G.: Simplified models and experimental verification for coupled transmission tower-line system to seismic excitations. J. Sound Vib. 286, 569–585 (2005)

    Article  Google Scholar 

  29. Warnitchai, P., Fujino, Y., Susumpow, T.: A non-linear dynamic model for cables and its application to a cable-structure system. J. Sound Vib. 187, 695–712 (1995)

    Article  Google Scholar 

  30. Gattulli, V., Morandini, M., Paolone, A.: A parametric analytical model for non-linear dynamics in cablec—stayed beam. Earthq. Eng. Struct. Dyn. 31, 1281–1300 (2002)

    Article  Google Scholar 

  31. Guo, T.D., Wang, L.H., Kang, H.J., Zhao, Y.Y.: Non-horizontally suspended cable’s dynamics with flexible tower’s modulations. J. Vib. Test. Syst. Dyn. 2, 21–32 (2018)

    Google Scholar 

  32. Guo, T.D., Kang, H.J., Wang, L.H., Liu, Q.J., Zhao, Y.Y.: Modal resonant dynamics of cables with a flexible support: a modulated diffraction problem. Mech. Syst. Signal Process. 106, 229–248 (2018)

    Article  Google Scholar 

  33. Zhang, W., Li, J.: Global analysis for a nonlinear vibration absorber with fast and slow modes. Int. J. Bifurc. Chaos 11, 2179–2194 (2001)

    Article  Google Scholar 

  34. Zhang, W., Wang, F., Yao, M.: Global bifurcations and chaotic dynamics in nonlinear nonplanar oscillations of a parametrically excited cantilever beam. Nonlinear Dyn. 40, 251–279 (2005)

    Article  MathSciNet  Google Scholar 

  35. Nayfeh, A.H.: Nonlinear Interactions. Wiley, New York (2000)

    MATH  Google Scholar 

  36. Guo, T.D., Kang, H.J., Wang, L.H., Zhao, Y.Y.: Cable’s mode interactions under vertical support motions: boundary resonant modulation. Nonlinear Dyn. 84, 1259–1279 (2016)

    Article  MathSciNet  Google Scholar 

  37. Chen, L.H., Zhang, W., Yang, F.H.: Nonlinear dynamics of higher-dimensional system for an axially accelerating viscoelastic beam with in-plane and out-of-plane vibrations. J. Sound Vib. 329, 5321–5345 (2010)

    Article  Google Scholar 

  38. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  39. Doedel, E.J.: Lecture notes on numerical analysis of nonlinear equations. In: Krauskopf, B., Osinga, H.M., Galán-Vioque, J. (eds.) Numerical Continuation Methods for Dynamical Systems, pp. 1–49. Springer (2007)

  40. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, New York (2008)

    MATH  Google Scholar 

  41. Guo, T.D., Kang, H.J., Wang, L.H., Zhao, Y.Y.: Cable dynamics under non-ideal support excitations: nonlinear dynamic interactions and asymptotic modelling. J. Sound Vib. 384, 253–272 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by National Science Foundation of China under Grant Nos. 11502076, 11872176 and 11572117, and Provincial Science Foundation of Hunan (No. 2017JJ3029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieding Guo.

Appendices

Appendix A

Cable’s linear modal analysis can be found in reference [1]. We restrict our attention to cable’s in-plane symmetric modes in this paper, and these modes are given by

$$\begin{aligned} \phi _i \left( x \right)= & {} c_i \left[ {1-\tan \left( {{\omega _i }/2} \right) \sin \omega _i x-\cos \omega _i x} \right] ,\nonumber \\&i=1,3,5\ldots \end{aligned}$$
(59)

where \(c_{\mathrm{i}}\) is the normalization constants. And the associated eigen-frequencies are determined by

$$\begin{aligned} \frac{1}{2}\omega _i -\tan \left( {\frac{1}{2}\omega _i } \right) -\frac{1}{2\lambda ^{2}}\omega _i^3 =0,\;i=1,3,5\ldots \end{aligned}$$
(60)

where \(\lambda ^{2}={ EA}/{ mgl}(8b/l)^{3}\) is the elasto-geometric parameter. The above nonlinear transcendental equations can be solved by the Newton- Raphson method.

$$\begin{aligned} L\left[ w \right]= & {} -{w}''-\alpha {y}''\int _0^1 {\left( {{y}'{w}'} \right) } \hbox {d}x,\quad \nonumber \\ N_2 \left[ w \right]= & {} \alpha {w}''\int _0^1 {\left( {{y}'{w}'} \right) } \hbox {d}x+\alpha {y}''\int _0^1 {\left( {{{w}'^{2}}/2} \right) } \hbox {d}x,\nonumber \\ N_3 [ w ]= & {} \alpha {w}''\int _0^1 {\left( {{{w}'^{2}}/2} \right) } \hbox {d}x \end{aligned}$$
(61)
$$\begin{aligned} N_3 \left[ {w_1 } \right]= & {} \alpha {w}''_1 \int _0^1 {\left( {{{w'}_1^{2}}/2} \right) } \hbox {d}x \nonumber \\ N_3 \left[ {w_1,w_2 } \right]= & {} \alpha {w}''_1 \int _0^1 {\left( {{y}'{w}'_2 } \right) } \hbox {d}x+\alpha {y}''\int _0^1 {\left( {{w}'_1 {w}'_2 } \right) } \hbox {d}x\nonumber \\&+\,\alpha {w}''_2 \int _0^1 {\left( {{y}'{w}'_1 } \right) } dx \end{aligned}$$
(62)

Appendix B

The shape functions \(\varPsi _1 \left( x \right) ,\;\varPsi _2 \left( x \right) \) are governed by the following linear boundary value problems (BVPs)

$$\begin{aligned}&4\omega _n^2 \varPsi _1 \left( x \right) +\varPsi _1 ^{\prime \prime }+\alpha {y}''\int _0^1 {{y}' \varPsi _1 ^{\prime }} \hbox {d}x=-\varPi _1 \left( x \right) \end{aligned}$$
(63)
$$\begin{aligned}&\varPsi _2 ^{\prime \prime }+\alpha {y}''\int _0^1 {{y}' \varPsi _2 ^{\prime }} \hbox {d}x=-\varPi _2 \left( x \right) \end{aligned}$$
(64)

with boundary conditions \(\varPsi _k \left( 0 \right) =\varPsi _k \left( 1 \right) =0\). Here \(\varPi _1 \left( x \right) \) and \(\varPi _2 \left( x \right) \) are

$$\begin{aligned} \varPi _1 \left( x \right)= & {} \alpha /2\left\langle {{\phi }'_1,{\phi }'_1 \;} \right\rangle {y}''+\alpha \left\langle {{y}',{\phi }'_1 \;} \right\rangle {\phi }''_1 \end{aligned}$$
(65)
$$\begin{aligned} \varPi _2 \left( x \right)= & {} \alpha /2\left\langle {{\phi }'_1,{\phi }'_1 \;} \right\rangle {y}''+\alpha \left\langle {{y}',{\phi }'_1 \;} \right\rangle {\phi }''_1 \end{aligned}$$
(66)
$$\begin{aligned} \chi _n \left( x \right)= & {} \alpha \left[ \frac{3}{2}\phi _n ^{\prime \prime }\left\langle {\phi _n ^{\prime },\phi _n ^{\prime }} \right\rangle +\phi _n ^{\prime \prime }\left\langle {{y}',\varPsi _1 ^{\prime }} \right\rangle +{y}''\left\langle {\phi _n ^{\prime },\varPsi _1 ^{\prime }} \right\rangle \right. \nonumber \\&+\varPsi _1 ^{\prime \prime }\left\langle {{y}',\phi _n ^{\prime }} \right\rangle +2\phi _n ^{\prime \prime }\left\langle {{y}',\varPsi _2 ^{\prime }} \right\rangle +2{y}''\left\langle {\phi _n ^{\prime },\varPsi _2 ^{\prime }} \right\rangle \nonumber \\&\left. +2\varPsi _2 ^{\prime \prime }\left\langle {{y}',\phi _n ^{\prime }} \right\rangle \right] \end{aligned}$$
(67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Kang, H., Wang, L. et al. An inclined cable excited by a non-ideal massive moving deck: an asymptotic formulation. Nonlinear Dyn 95, 749–767 (2019). https://doi.org/10.1007/s11071-018-4594-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4594-2

Keywords

Navigation