Skip to main content
Log in

The complexity–entropy causality plane based on multivariate multiscale distribution entropy of traffic time series

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The complexity of time series has become a necessary condition to explain nonlinear dynamic systems. We propose multivariate multiscale distribution entropy (MMSDE). Based on this method, this paper evaluates the complexity of traffic system with complexity-entropy causality plane (CEPE). The distribution entropy makes full use of the distance between vectors in the state space and calculates the probability density information to estimate the complexity of the system. And MMSDE can quantify the complexity of multivariable time series from multiple time scales. We test the performance of this method with simulated data. The results show that CEPE based on MMSDE is less dependent on parameters. The complex entropy plane method proposed here has strong anti-interference ability and strong robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bai, M.Y., Zhu, H.B.: Power law and multiscaling properties of the Chinese stock market. Phys. A Stat. Mech. Appl. 389(9), 1883–1890 (2010)

    Article  Google Scholar 

  2. Chang, G.L., Mahmassani, H.S.: Travel time prediction and departure time adjustment behavior dynamics in a congested traffic system. Transp. Res. Part B 22(3), 217–232 (2008)

    Article  Google Scholar 

  3. Chowdhury, D., Schadschneider, A., Katsuhiro N.: Traffic phenomena in biology: from molecular motors to organisms (2007)

  4. Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28(1), 1–21 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gasser, I., Sirito, G., Werner, B.: Bifurcation analysis of a class of car following traffic models. Phys. D Nonlinear Phenom. 197(3), 222–241 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Grayling, A.C.: The physics of traffic. New Sci. 197(2638), 48–48 (2008)

    Article  Google Scholar 

  7. Nishinari, K., Treiber, M., Helbing, D.: Interpreting the wide scattering of synchronized traffic data by time gap statistics. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(62), 067101 (2003)

    Article  Google Scholar 

  8. Shang, P., Li, X., Kamae, S.: Chaotic analysis of traffic time series. Chaos Solitons Fractals 25(1), 121–128 (2005)

    Article  MATH  Google Scholar 

  9. Shang, P., Li, X., Kamae, S.: Nonlinear analysis of traffic time series at different temporal scales. Phys. Lett. A 357(45), 314–318 (2006)

    Article  MATH  Google Scholar 

  10. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  Google Scholar 

  11. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(1), 021906 (2005)

    Article  MathSciNet  Google Scholar 

  12. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89(6), 068102 (2002)

    Article  Google Scholar 

  13. Parzen, E.: Proceedings of the fourth Berkeley symposium on mathematical statistics and probability: volume II, contributions to probability theory. University of California Press 2(12), 279–280 (1961)

  14. Pincus, S., Singer, B.H.: Randomness and degrees of irregularity. Proc. Natl. Acad. Sci. USA 93(5), 2083 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Richman, J.S., Moorman, J.R.: Physiological time series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039 (2000)

    Article  Google Scholar 

  16. JRycroft, M.: Nonlinear time series analysis. J. Atmos. Solar Terr. Phys. 62(2), 152–152 (2000)

    Google Scholar 

  17. Zhou, S., Zhou, L., Liu, S., Sun, P., Luo, Q., Junke, W.: The application of approximate entropy theory in defects detecting of IGBT module. Active Passive Electron. Compon. 882–7516, 2014 (2012)

    Google Scholar 

  18. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D Nonlinear Phenom. 9(1), 189–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185(1), 77–87 (1994)

    Article  Google Scholar 

  20. Shi, K., Zhu, H., Zhong, S.: Improved delay-dependent stability criteria for neural networks with discrete and distributed time-varying delays using a delay-partitioning approach. Nonlinear Dyn. 79(1), 575–592 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 49(2), 1685 (1994)

    Google Scholar 

  22. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1), 82 (1995)

    Article  Google Scholar 

  23. Shi, K., Zhu, H., Zhong, S.: New stability analysis for neutral type neural networks with discrete and distributed delays using a multiple integral approach. J. Frankl. Inst. 352(1), 155–176 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martin, M.T., Plastino, A., Rosso, O.A.: Generalized statistical complexity measures: geometrical and analytical properties. Phys. A Stat. Mech. Appl. 369(2), 439–462 (2006)

    Article  Google Scholar 

  25. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy to distinguish physiologic and synthetic RR time series. Comput. Cardiol. 29(29), 137 (2002)

    Article  Google Scholar 

  26. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy to distinguish physiologic and synthetic RR time series. Comput. Cardiol. 29, 137–140 (2002)

    Article  Google Scholar 

  27. Costa, M., Peng, C.K., Goldberger, A.L., Hausdorff, J.M.: Multiscale entropy analysis of human gait dynamics. Phys. A Stat. Mech. Appl. 330(12), 53–60 (2003)

    Article  MATH  Google Scholar 

  28. Costa, M., Goldberger, A.L., Peng, C.K.: Costa, Goldberger, and Peng reply. Phys. Rev. Lett. 92(8), 089804 (2004)

    Article  Google Scholar 

  29. Thuraisingham, R.A., Gottwald, G.A.: On multiscale entropy analysis for physiological data. Phys. A Stat. Mech. Appl. 366(1), 323–332 (2006)

    Article  Google Scholar 

  30. Peng, L., Liu, C., Ke, L., Zheng, D., Liu, C., Hou, Y.: Assessing the complexity of short-term heartbeat interval series by distribution entropy. Med. Biol. Eng. Comput. 53(1), 77–87 (2015)

    Article  Google Scholar 

  31. Huo, C., Huang, X., Zhuang, J., Hou, F., Ni, H., Ning, X.: Quadrantal multiscale distribution entropy analysis of heartbeat interval series based on a modified Poincare plot. Phys. A Stat. Mech. Appl. 392(17), 3601–3609 (2013)

    Article  MATH  Google Scholar 

  32. Li, P., Karmakar, C., Yan, C., Palaniswami, M., Liu, C.: Supplementary information for classification of 5-S epileptic EEG recordings using distribution entropy and sample entropy. Phys. A Stat. Mech. Appl. 92(13), 2565–2590 (2016)

    Google Scholar 

  33. Li, P., Li, K., Liu, C., Zheng, D., Li, Z.M., Liu, C.: Detection of coupling in short physiological series by a joint distribution entropy method. IEEE Trans. Biomed. Eng. 63(11), 2231–2242 (2016)

    Article  Google Scholar 

  34. Li, Y., Li, P., Karmakar, C., Liu, C.: Distribution entropy for short-term qt interval variability analysis: a comparison between the heart failure and normal control groups. Comput. Cardiol. Conf. 33(2), 389–393 (2016)

    Google Scholar 

  35. Peng, L., Karmakar, C., Chang, Y., Palaniswami, M., Liu, C.: Classification of 5-S epileptic EEG recordings using distribution entropy and sample entropy. Front. Physiol. 7(66), 136 (2016)

    Google Scholar 

  36. Ahmed, M.U., Mandic, D.P.: Multivariate multiscale entropy: a tool for complexity analysis of multichannel data. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84(6 Pt1), 061918 (2011)

    Article  Google Scholar 

  37. Ahmed, M.U., Mandic, D.P.: Multivariate multiscale entropy analysis. IEEE Signal Process. Lett. 19(2), 91–94 (2012)

    Article  Google Scholar 

  38. Rosso, O.A., Larrondo, H.A., Martin, M.T., Plastino, A., Fuentes, M.A.: Distinguishing noise from chaos. Phys. Rev. Lett. 99(15), 154102 (2007)

    Article  Google Scholar 

  39. Zunino, L., Ribeiro, H.V.: Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane. Chaos Solitons Fractals 91, 679–688 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zunino, L., Zanin, M., Tabak, B.M., Rosso, O.A.: Complexity-entropy causality plane: a useful approach to quantify the stock market inefficiency. Phys. A Stat. Mech. Appl. 389(9), 1891–1901 (2010)

    Article  Google Scholar 

  41. Albano, A.M., Muench, J., Schwartz, C.: Singular-value decomposition and the Grassberger–Procaccia algorithm. Phys. Rev. A Gen. Phys. 38(6), 3017–3026 (1988)

    Article  MathSciNet  Google Scholar 

  42. Rosenstein, M.T., Collins, J.J., Luca, C.J.D.: Reconstruction expansion as a geometry-based framework for choosing proper delay times. Phys. D Nonlinear Phenom. 73(94), 82–98 (1994)

    Article  MathSciNet  Google Scholar 

  43. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  44. Cao, L., Mees, A., Judd, K.: Dynamics from multivariate time series. Phys. D 121, 75–88 (1998)

    Article  MATH  Google Scholar 

  45. Li, P., Liu, C., Wang, X., Li, L., Yang, L., Chen, Y., Liu, C.: Testing pattern synchronization in coupled systems through different entropy-based measures. Med. Biol. Eng. Comput. 51(5), 581–591 (2013)

    Article  Google Scholar 

  46. Liu, C., Liu, C., Shao, P., Li, L., Sun, X., Wang, X., Liu, F.: Comparison of different threshold values R for approximate entropy: application to investigate the heart rate variability between heart failure and healthy control groups. Physiol. Meas. 32(2), 167–180 (2011)

    Article  Google Scholar 

  47. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. 88(6), 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  48. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039–H2049 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the Fundamental Research Funds for the Central Universities (2017YJS199) and the funds of the China National Science (61771035,61371130) and the Beijing National Science (4162047) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shang, P. The complexity–entropy causality plane based on multivariate multiscale distribution entropy of traffic time series. Nonlinear Dyn 95, 617–629 (2019). https://doi.org/10.1007/s11071-018-4586-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4586-2

Keywords

Navigation