Skip to main content

Advertisement

Log in

Assessing the complexity of short-term heartbeat interval series by distribution entropy

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Complexity of heartbeat interval series is typically measured by entropy. Recent studies have found that sample entropy (SampEn) or fuzzy entropy (FuzzyEn) quantifies essentially the randomness, which may not be uniformly identical to complexity. Additionally, these entropy measures are heavily dependent on the predetermined parameters and confined to data length. Aiming at improving the robustness of complexity assessment for short-term RR interval series, this study developed a novel measure—distribution entropy (DistEn). The DistEn took full advantage of the inherent information underlying the vector-to-vector distances in the state space by probability density estimation. Performances of DistEn were examined by theoretical data and experimental short-term RR interval series. Results showed that DistEn correctly ranked the complexity of simulated chaotic series and Gaussian noise series. The DistEn had relatively lower sensitivity to the predetermined parameters and showed stability even for quantifying the complexity of extremely short series. Analysis further showed that the DistEn indicated the loss of complexity in both healthy aging and heart failure patients (both p < 0.01), whereas neither the SampEn nor the FuzzyEn achieved comparable results (all p ≥ 0.05). This study suggested that the DistEn would be a promising measure for prompt clinical examination of cardiovascular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amoud H, Snoussi H, Hewson D, Doussot M, Duchene J (2007) Intrinsic mode entropy for nonlinear discriminant analysis. IEEE Signal Process Lett 14(5):297–300

    Article  Google Scholar 

  2. Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):174102

    Article  PubMed  Google Scholar 

  3. Bolea J, Laguna P, Remartínez JM, Rovira E, Navarro A, Bailón R (2014) Methodological framework for estimating the correlation dimension in HRV signals. Comput Math Methods Med 2014:1–11

    Article  Google Scholar 

  4. Castiglioni P, Di Rienzo M (2008) How the threshold r influences approximate entropy analysis of heart-rate variability. In: Computers in Cardiology, Bologna, Italy, pp 561–564

  5. Chen W, Zhuang J, Yu W, Wang Z (2009) Measuring complexity using FuzzyEn, ApEn, and SampEn. Med Eng Phys 31(1):61–68

    Article  PubMed  Google Scholar 

  6. Chon K, Scully CG, Lu S (2009) Approximate entropy for all signals. IEEE Eng Med Biol Mag 28(6):18–23

    Article  PubMed  Google Scholar 

  7. Clifford GD, Moody GB (2012) Signal quality in cardiorespiratory monitoring. Physiol Meas 33(9):E01

    Google Scholar 

  8. Costa M, Goldberger AL, Peng CK (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89(6):068102

    Article  PubMed  Google Scholar 

  9. Costa M, Goldberger AL, Peng CK (2005) Multiscale entropy analysis of biological signals. Phys Rev E 71(2):021906

    Article  Google Scholar 

  10. Goldberger AL (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347(9011):1312–1314

    Article  CAS  PubMed  Google Scholar 

  11. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220

    Article  CAS  PubMed  Google Scholar 

  12. Hu M, Liang H (2012) Adaptive multiscale entropy analysis of multivariate neural data. IEEE Trans Biomed Eng 59(1):12–15

    Article  PubMed  Google Scholar 

  13. Iyengar N, Peng CK, Morin R, Goldberger AL, Lipsitz LA (1996) Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol 271(4):R1078–R1084

    CAS  PubMed  Google Scholar 

  14. Lake DE, Moorman JR (2011) Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. Am J Physiol Heart Circ Physiol 300(1):H319–H325

    Article  CAS  PubMed  Google Scholar 

  15. Li P, Liu C, Wang X, Li B, Che W, Liu C (2012) Cross-sample entropy and cross-fuzzy entropy for testing pattern synchrony: how results vary with different threshold value r. In: World Congress on Medical Physics and Biomedical Engineering, Beijing, China, pp 485–488

  16. Li P, Liu C, Wang X, Li L, Yang L, Chen Y, Liu C (2013) Testing pattern synchronization in coupled systems through different entropy-based measures. Med Biol Eng Comput 51(5):581–591

    Article  PubMed  Google Scholar 

  17. Li P, Liu C, Wang X, Zheng D, Li Y, Liu C (2014) A low-complexity data-adaptive approach for premature ventricular contraction recognition. Signal Image Video Process 8(1):111–120

    Article  Google Scholar 

  18. Lipsitz La GAL (1992) Loss of complexity and aging: potential applications of fractals and chaos theory to senescence. JAMA 267(13):1806–1809

    Article  Google Scholar 

  19. Liu C, Liu C, Shao P, Li L, Sun X, Wang X, Liu F (2011) Comparison of different threshold values r for approximate entropy: application to investigate the heart rate variability between heart failure and healthy control groups. Physiol Meas 32(2):167–180

    Article  PubMed  Google Scholar 

  20. Liu C, Li L, Zhao L, Zheng D, Li P, Liu C (2012) A combination method of improved impulse rejection filter and template matching for identification of anomalous intervals in RR sequences. J Med Biol Eng 32(4):245–249

    Article  Google Scholar 

  21. Lu S, Chen X, Kanters JK, Solomon IC, Chon KH (2008) Automatic selection of the threshold value r for approximate entropy. IEEE Trans Biomed Eng 55(8):1966–1972

    Article  PubMed  Google Scholar 

  22. Molina-Pico A, Cuesta-Frau D, Aboy M, Crespo C, Miro-Martinez P, Oltra-Crespo S (2011) Comparative study of approximate entropy and sample entropy robustness to spikes. Artif Intell Med 53(2):97–106

    Article  PubMed  Google Scholar 

  23. Nikita KS, Lin JC, Fotiadis DI, Arredondo MT (2012) Editorial: special issue on mobile and wireless technologies for healthcare delivery. IEEE Trans Biomed Eng 59(11):3083–3089

    Article  PubMed  Google Scholar 

  24. Nikulin VV, Brismar T (2004) Comment on ‘multiscale entropy analysis of complex physiologic time series’. Phys Rev Lett 92(8):089803

    Article  PubMed  Google Scholar 

  25. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88(6):2297–2301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Pincus S, Singer BH (1996) Randomness and degrees of irregularity. Proc Natl Acad Sci USA 93(5):2083–2088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Poon CS, Merrill CK (1997) Decrease of cardiac chaos in congestive heart failure. Nature 389(6650):492–495

    Article  CAS  PubMed  Google Scholar 

  28. Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, Montano N (2007) Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J App Physiol 103(4):1143–1149

    Article  Google Scholar 

  29. Porta A, Castiglioni P, Bari V, Bassani T, Marchi A, Cividjian A, Quintin L, Rienzo MD (2013) K-nearest-neighbor conditional entropy approach for the assessment of the short-term complexity of cardiovascular control. Physiol Meas 34(1):17

    Article  CAS  PubMed  Google Scholar 

  30. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049

    CAS  PubMed  Google Scholar 

  31. Schmitt DT, Ivanov P (2007) Fractal scale-invariant and nonlinear properties of cardiac dynamics remain stable with advanced age: a new mechanistic picture of cardiac control in healthy elderly. Am J Physiol Regul Integr Comp Physiol 293(5):R1923–R1937

    Article  CAS  PubMed  Google Scholar 

  32. Schmitt DT, Stein PK, Ivanov P (2009) Stratification pattern of static and scale-invariant dynamic measures of heartbeat fluctuations across sleep stages in young and elderly. IEEE Trans Biomed Eng 56(5):1564–1573

    Article  PubMed Central  PubMed  Google Scholar 

  33. Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2002) An advanced detrending method with application to HRV analysis. IEEE Trans Biomed Eng 49(2):172–175

    Article  PubMed  Google Scholar 

  34. Theiler J, Eubank S, Longtin A, Galdrikian B, Doyne Farmer J (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58(1):77–94

    Article  Google Scholar 

  35. Thuraisingham RA, Gottwald GA (2006) On multiscale entropy analysis for physiological data. Phys A 366:323–332

    Article  Google Scholar 

  36. Valencia JF, Porta A, Vallverdu M, Claria F, Baranowski R, Orlowska-Baranowska E, Caminal P (2009) Refined multiscale entropy: application to 24-h Holter recordings of heart period variability in healthy and aortic stenosis subjects. IEEE Trans Biomed Eng 56(9):2202–2213

    Article  PubMed  Google Scholar 

  37. Voss A, Heitmann A, Schroeder R, Peters A, Perz S (2012) Short-term heart rate variability–age dependence in healthy subjects. Physiol Meas 33(8):1289–1311

    Article  CAS  PubMed  Google Scholar 

  38. Wagner CD, Persson PB (1998) Chaos in the cardiovascular system: an update. Cardiovasc Res 40(2):257–264

    Article  CAS  PubMed  Google Scholar 

  39. Xie H-B, He W-X, Liu H (2008) Measuring time series regularity using nonlinear similarity-based sample entropy. Phys Lett A 372(48):7140–7146

    Article  CAS  Google Scholar 

  40. Yentes J, Hunt N, Schmid K, Kaipust J, McGrath D, Stergiou N (2013) The appropriate use of approximate entropy and sample entropy with short data sets. Ann Biomed Eng 41(2):349–365

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the National Natural Science Foundation of China (61471223), the China Postdoctoral Science Foundation (2014M561933), and the Young Scientists Fund of the National Natural Science Foundation of China (61201049, 31200744).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changchun Liu or Yinglong Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Liu, C., Li, K. et al. Assessing the complexity of short-term heartbeat interval series by distribution entropy. Med Biol Eng Comput 53, 77–87 (2015). https://doi.org/10.1007/s11517-014-1216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1216-0

Keywords

Navigation