Skip to main content
Log in

Modeling and simulation of revolute clearance joint with friction using the NURBS-based isogeometric analysis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, the revolute clearance joint problem is discussed within the framework of isogeometric analysis (IGA). A unified geometric and analysis model for the clearance joint is proposed based on the multiple non-uniform rational B-spline (NURBS) patches approach. The formulations of the contact variables, virtual work and linearization are developed using the geometrically exact covariant approach and discretized in the IGA settings. Special treatments of the multipatch-related issues are provided to ensure the stability and efficiency of the contact detection and continuous integration over patch interfaces and verified with long-term numerical simulations. Numerical simulation of two mechanisms with variant flexibilities is performed, and the dynamic responses are analyzed in detail. Results show that the proposed framework is promising for the detailed analysis of revolute clearance joint problems with friction considering the exact geometry of contact interface and sophisticated constitutive laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Abdallah, M.A.B., Khemili, I., Aifaoui, N.: Numerical investigation of a flexible slider-crank mechanism with multijoints with clearance. Multibody Syst. Dyn. 38(2), 173–199 (2016). https://doi.org/10.1007/s11044-016-9526-7

    Article  Google Scholar 

  2. Adam, C., Hughes, T.J.R., Bouabdallah, S., Zarroug, M., Maitournam, H.: Selective and reduced numerical integrations for nurbs-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284, 732–761 (2015). https://doi.org/10.1016/j.cma.2014.11.001

    Article  MathSciNet  MATH  Google Scholar 

  3. Almeida, J., Fraga, F., Silva, M., Silva-Carvalho, L.: Feedback control of the head-neck complex for nonimpact scenarios using multibody dynamics. Multibody Syst. Dyn. 21(4), 395–416 (2009). https://doi.org/10.1007/s11044-009-9148-4

    Article  MATH  Google Scholar 

  4. Askari, E., Flores, P., Dabirrahmani, D., Appleyard, R.: Nonlinear vibration and dynamics of ceramic on ceramic artificial hip joints: a spatial multibody modelling. Nonlinear Dyn. 76(2), 1365–1377 (2014). https://doi.org/10.1007/s11071-013-1215-y

    Article  MathSciNet  Google Scholar 

  5. Bonet, D.J., Wood, D.R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  6. Castro, A.P.G., Completo, A., Simes, J.A., Flores, P.: Biomechanical behaviour of cancellous bone on patellofemoral arthroplasty with journey prosthesis: a finite element study. Comput. Methods Biomech. Biomed. Eng. 18(10), 1090–1098 (2015). https://doi.org/10.1080/10255842.2013.870999

    Article  Google Scholar 

  7. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, New York (2009)

    Book  Google Scholar 

  8. Cottrell, J.A., Hughes, T.J.R., Reali, A.: Studies of refinement and continuity in isogeometric structural analysis. Comput. Methods Appl. Mech. Eng. 196(41–44), 4160–4183 (2007). https://doi.org/10.1016/j.cma.2007.04.007

    Article  MATH  Google Scholar 

  9. De Lorenzis, L., Temizer, I., Wriggers, P., Zavarise, G.: A large deformation frictional contact formulation using nurbs-based isogeometric analysis. Int. J. Numer. Methods Eng. 87(13), 1278–1300 (2011). https://doi.org/10.1002/nme.3159

    Article  MathSciNet  MATH  Google Scholar 

  10. De Lorenzis, L., Wriggers, P.: Computational homogenization of rubber friction on rough rigid surfaces. Comput. Mater. Sci. 77, 264–280 (2013). https://doi.org/10.1016/j.commatsci.2013.04.049

    Article  Google Scholar 

  11. De Lorenzis, L., Wriggers, P., Hughes, T.J.: Isogeometric contact: a review. GAMM-Mitteilungen 37(1), 85–123 (2014). https://doi.org/10.1002/gamm.201410005

    Article  MathSciNet  MATH  Google Scholar 

  12. Ebrahimi, S., Eberhard, P.: A linear complementarity formulation on position level for frictionless impact of planar deformable bodies. ZAMM 86(10), 807–817 (2006). https://doi.org/10.1002/zamm.200510288

    Article  MathSciNet  MATH  Google Scholar 

  13. Ebrahimi, S., Kvecses, J.: Unit homogenization for estimation of inertial parameters of multibody mechanical systems. Mech. Mach. Theory 45(3), 438–453 (2010). https://doi.org/10.1016/j.mechmachtheory.2009.10.004

    Article  MATH  Google Scholar 

  14. Erkaya, S., Uzmay, I.: Modeling and simulation of joint clearance effects on mechanisms having rigid and flexible links. J. Mech. Sci. Technol. 28(8), 2979–2986 (2014). https://doi.org/10.1007/s12206-014-0705-2

    Article  Google Scholar 

  15. Flores, P., Ambrsio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82(17–19), 1359–1369 (2004). https://doi.org/10.1016/j.compstruc.2004.03.031

    Article  Google Scholar 

  16. Flores, P., Ambrsio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24(1), 103–122 (2010). https://doi.org/10.1007/s11044-010-9209-8

    Article  MathSciNet  Google Scholar 

  17. Flores, P., Ambrsio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12(1), 47–74 (2004). https://doi.org/10.1023/B:MUBO.0000042901.74498.3a

    Article  MATH  Google Scholar 

  18. Flores, P., Lankarani, H.M.: Contact Force Models for Multibody Dynamics. Springer, Berlin (2016)

    Book  Google Scholar 

  19. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005). https://doi.org/10.1016/j.cma.2004.10.008

    Article  MathSciNet  MATH  Google Scholar 

  20. Johannessen, K.A.: Optimal quadrature for univariate and tensor product splines. Comput. Methods Appl. Mech. Eng. 316, 84–99 (2017). https://doi.org/10.1016/j.cma.2016.04.030

    Article  MathSciNet  Google Scholar 

  21. Kim, J.Y., Youn, S.K.: Isogeometric contact analysis using mortar method. Int. J. Numer. Methods Eng. 89(12), 1559–1581 (2012). https://doi.org/10.1002/nme.3300

    Article  MathSciNet  MATH  Google Scholar 

  22. Konyukhov, A., Izi, R.: Introduction to Computational Contact Mechanics: A Geometrical Approach, 1st edn. Wiley, Chichester (2015)

    MATH  Google Scholar 

  23. Konyukhov, A., Schweizerhof, K.: Computational Contact Mechanics: Geometrically Exact Theory for Arbitrary Shaped Bodies, 2013th edn. Springer, Berlin (2014)

    MATH  Google Scholar 

  24. Landon, R.L., Hast, M.W., Piazza, S.J.: Robust contact modeling using trimmed nurbs surfaces for dynamic simulations of articular contact. Comput. Methods Appl. Mech. Eng. 198(30), 2339–2346 (2009). https://doi.org/10.1016/j.cma.2009.02.022

    Article  MATH  Google Scholar 

  25. Lei, Z., Gillot, F., Jezequel, L.: A multiple patches connection method in isogeometric analysis. Appl. Math. Model. 39(15), 4405–4420 (2015). https://doi.org/10.1016/j.apm.2014.12.055

    Article  MathSciNet  Google Scholar 

  26. Lengiewicz, J., Korelc, J., Stupkiewicz, S.: Automation of finite element formulations for large deformation contact problems. Int. J. Numer. Methods Eng. 85(10), 1252–1279 (2011). https://doi.org/10.1002/nme.3009

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, C.S., Zhang, K., Yang, R.: The fem analysis and approximate model for cylindrical joints with clearances. Mech. Mach. Theory 42(2), 183–197 (2007). https://doi.org/10.1016/j.mechmachtheory.2006.02.006

    Article  MATH  Google Scholar 

  28. Lorenzis, L.D., Wriggers, P., Zavarise, G.: A mortar formulation for 3d large deformation contact using nurbs-based isogeometric analysis and the augmented lagrangian method. Comput. Mech. 49(1), 1–20 (2012). https://doi.org/10.1007/s00466-011-0623-4

    Article  MathSciNet  MATH  Google Scholar 

  29. Lu, J.: Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput. Methods Appl. Mech. Eng. 200(5–8), 726–741 (2011). https://doi.org/10.1016/j.cma.2010.001

    Article  MathSciNet  MATH  Google Scholar 

  30. Lu, J., Zheng, C.: Dynamic cloth simulation by isogeometric analysis. Comput. Methods Appl. Mech. Eng. 268, 475–493 (2014). https://doi.org/10.1016/j.cma.2013.09.016

    Article  MathSciNet  MATH  Google Scholar 

  31. Matzen, M.E., Cichosz, T., Bischoff, M.: A point to segment contact formulation for isogeometric, nurbs based finite elements. Comput. Methods Appl. Mech. Eng. 255, 27–39 (2013). https://doi.org/10.1016/j.cma.2012.11.011

    Article  MathSciNet  MATH  Google Scholar 

  32. Meireles, S., Completo, A., Antnio Simes, J., Flores, P.: Strain shielding in distal femur after patellofemoral arthroplasty under different activity conditions. J. Biomech. 43(3), 477–484 (2010). https://doi.org/10.1016/j.jbiomech.2009.09.048

    Article  Google Scholar 

  33. Morganti, S., Auricchio, F., Benson, D.J., Gambarin, F.I., Hartmann, S., Hughes, T.J.R., Reali, A.: Patient-specific isogeometric structural analysis of aortic valve closure. Comput. Methods Appl. Mech. Eng. 284(Supplement C), 508–520 (2015). https://doi.org/10.1016/j.cma.2014.10.010

    Article  MathSciNet  MATH  Google Scholar 

  34. Padmanabhan, V., Laursen, T.A.: A framework for development of surface smoothing procedures in large deformation frictional contact analysis. Finite Elem. Anal. Des. 37(3), 173–198 (2001). https://doi.org/10.1016/S0168-874X(00)00029-9

    Article  MATH  Google Scholar 

  35. Sauer, R.A., De Lorenzis, L.: An unbiased computational contact formulation for 3d friction. Int. J. Numer. Methods Eng. 101(4), 251–280 (2015). https://doi.org/10.1002/nme.4794

    Article  MathSciNet  MATH  Google Scholar 

  36. Sauer, R.A., Duong, T.X., Corbett, C.J.: A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements. Comput. Methods Appl. Mech. Eng. 271(Supplement C), 48–68 (2014). https://doi.org/10.1016/j.cma.2013.11.025

    Article  MathSciNet  MATH  Google Scholar 

  37. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997). https://doi.org/10.1023/A:1009773505418

    Article  MathSciNet  MATH  Google Scholar 

  38. Stadler, M., Holzapfel, G.A., Korelc, J.: Cn continuous modelling of smooth contact surfaces using nurbs and application to 2d problems. Int. J. Numer. Methods Eng. 57(15), 2177–2203 (2003). https://doi.org/10.1002/nme.776

    Article  MATH  Google Scholar 

  39. Temizer, I., Wriggers, P., Hughes, T.J.R.: Contact treatment in isogeometric analysis with nurbs. Comput. Methods Appl. Mech. Eng. 200(9–12), 1100–1112 (2011). https://doi.org/10.1016/j.cma.2010.11.020

    Article  MathSciNet  MATH  Google Scholar 

  40. Temizer, I., Wriggers, P., Hughes, T.J.R.: Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with nurbs. Comput. Methods Appl. Mech. Eng. 209–212, 115–128 (2012). https://doi.org/10.1016/j.cma.2011.10.014

    Article  MathSciNet  MATH  Google Scholar 

  41. Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.12.002

    Article  Google Scholar 

  42. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011). https://doi.org/10.1007/s11071-010-9843-y

    Article  MATH  Google Scholar 

  43. Tian, Q., Sun, Y., Liu, C., Hu, H., Flores, P.: Elastohydrodynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Comput. Struct. 114–115(Supplement C), 106–120 (2013). https://doi.org/10.1016/j.compstruc.2012.10.019

    Article  Google Scholar 

  44. Vzquez, R.: A new design for the implementation of isogeometric analysis in octave and matlab: Geopdes 3.0. Comput. Math. Appl. 72(3), 523–554 (2016). https://doi.org/10.1016/j.camwa.2016.05.010

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, G., Liu, H.: Dynamic analysis and wear prediction of planar five-bar mechanism considering multiflexible links and multiclearance joints. J. Tribol. 139(5), 051,606–051,606-14 (2017). https://doi.org/10.1115/1.4035478

    Article  Google Scholar 

  46. Wang, Z., Tian, Q., Hu, H., Flores, P.: Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance. Nonlinear Dyn. (2016). https://doi.org/10.1007/s11071-016-2978-8

    Article  Google Scholar 

  47. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006)

    Book  Google Scholar 

  48. Wu, S.H., Tsai, S.J.: Contact stress analysis of skew conical involute gear drives in approximate line contact. Mech. Mach. Theory 44(9), 1658–1676 (2009). https://doi.org/10.1016/j.mechmachtheory.2009.01.010

    Article  MATH  Google Scholar 

  49. Zhao, B., Dai, X.D., Zhang, Z.N., Xie, Y.B.: Numerical study of the effects on clearance joint wear in flexible multibody mechanical systems. Tribol. Trans. 58(3), 385–396 (2015). https://doi.org/10.1080/10402004.2014.977475

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by the National Natural Science Foundation of China [Grant Numbers 11772136, 11702102]; China Postdoctoral Science Foundation [Grant Number 2018M632831].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pi, T., Zhang, Y. Modeling and simulation of revolute clearance joint with friction using the NURBS-based isogeometric analysis. Nonlinear Dyn 95, 195–215 (2019). https://doi.org/10.1007/s11071-018-4559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4559-5

Keywords

Navigation