Skip to main content
Log in

Hyperchaos in constrained Hamiltonian system and its control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper first formulates a Hamiltonian system with hyperchaotic phenomena and investigates the equilibrium point and double Hopf bifurcation of the system. We obtain the result that the Hamiltonian system has hyperchaotic behaviors when any system parameter varies. The influences of holonomic constraint and nonholonomic constraint on the equilibrium points, invariance and the hyperchaotic state of the Hamiltonian system are then studied. Finally, we achieve the hyperchaotic control of the Hamiltonian system by introducing the constraint method. The studies indicate that the constraint can not only change the Hamiltonian system from hyperchaotic state to periodic state or chaotic state, but also make the Hamiltonian system become globally asymptotically stable. Numerical simulations, including Lyapunov exponents, bifurcation diagrams, Poincaré maps and phase portraits for systems, exhibit the complex dynamical behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Xu, B., Chen, D., Zhang, H., Wang, F., Zhang, X., Wu, Y.: Hamiltonian model and dynamic analyses for a hydro-turbine governing system with fractional item and time-lag. Nonlinear Sci. Numer. Simul. 47, 35–47 (2017)

    Article  Google Scholar 

  2. Kortus, J., Hellberg, C., Pederson, M.: Hamiltonian of the \(V_{15}\) spin system from first-principles density-functional calculations. Phys. Rev. Lett. 86(15), 3400–3403 (2001)

    Article  Google Scholar 

  3. Navrotskaya, I., Soudackov, A., Hammes-Schiffer, S.: Model system-bath Hamiltonian and nonadiabatic rate constants for proton-coupled electron transfer at electrode-solution interface. J. Chem. Phys. 128(24), 244712 (2008)

    Article  Google Scholar 

  4. Wang, Y., Ueda, K., Bortoff, A.: A Hamiltonian approach to compute an energy efficient trajectory for a servomotor system. Automatica 49(12), 3550–3561 (2013)

    Article  MathSciNet  Google Scholar 

  5. Igata, T., Koike, T., Ishihara, H.: Constants of motion for constrained hamiltonian systems: a particle around a charged rotating black hole. Phys. Rev. D 83(6), 739–750 (2010)

    Google Scholar 

  6. Hao, J., Wang, J., Chen, C., Shi, L.: Nonlinear excitation control of multi-machine power systems with structure preserving models based on Hamiltonian system theory. Electr. Pow. Syst. Res. 74(3), 401–408 (2005)

    Article  Google Scholar 

  7. Hu, F., Zhu, W., Chen, L.: Stochastic fractional optimal control of quasi-integrable hamiltonian system with fractional derivative damping. Nonlinear Dyn. 70(2), 1459–1472 (2012)

    Article  MathSciNet  Google Scholar 

  8. Li, R., Wang, B., Li, G., Tian, B.: Hamiltonian system-based analytic modeling of the free rectangular thin plates’ free vibration. Appl. Math. Model 40(2), 984–992 (2016)

    Article  MathSciNet  Google Scholar 

  9. Cai, L., He, Z., Hu, H.: A new load frequency control method of multi-area power system via the viewpoints of port-Hamiltonian system and cascade system. IEEE Trans. Power Syst. 32(3), 1689–1700 (2017)

    Article  Google Scholar 

  10. Zotos, E.: Classifying orbits in the classical Henon-Heiles Hamiltonian system. Nonlinear Dyn. 79(3), 1665–1677 (2015)

    Article  MathSciNet  Google Scholar 

  11. Francesco, G., Kazumasa, A., Takeuchi, A., Politi, A., Torcini, A.: Chaos in the Hamiltonian mean-field model. Phys. Rev. E 84, 066211 (2011)

    Article  Google Scholar 

  12. Doveil, F., Macor, A., Aïssi, A.: Observation of Hamiltonian chaos in wave–particle interaction. Celest. Mech. Dyn. Astron. 102(1–3), 255–272 (2008)

    Article  MathSciNet  Google Scholar 

  13. Martinez-Del-Rio, D., Del-Castillo-Negrete, D., Olvera, A., Calleja, R.: Self-consistent chaotic transport in a high-dimensional mean-field Hamiltonian map model. Qual. Theor. Dyn. Sys. 14(2), 313–335 (2015)

    Article  MathSciNet  Google Scholar 

  14. Avetisov, V., Nechaev, S.: Chaotic Hamiltonian systems revisited: survival probability. Phys. Rev. E 81(4), 557–563 (2012)

    Google Scholar 

  15. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 7, 397–398 (1976)

    Article  Google Scholar 

  16. Tran, X., Kang, H.: Fixed-time complex modified function projective lag synchronization of chaotic (Hyperchaotic) complex systems. Complexity 2017, 1–9 (2017)

    Article  MathSciNet  Google Scholar 

  17. Gao, T., Chen, Z.: A new image encryption algorithm based on hyper-chaos. Phys. Lett. A 372(4), 394–400 (2008)

    Article  Google Scholar 

  18. Xue, C., Jiang, N., Lv, Y., Qiu, K.: Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems. IEEE Trans. Commun. 65(1), 312–319 (2017)

    Google Scholar 

  19. Hassan, M.F.: Synchronization of uncertain constrained hyperchaotic systems and chaos-based secure communications via a novel decomposed nonlinear stochastic estimator. Nonlinear Dyn. 83(4), 2183–2211 (2016)

    Article  MathSciNet  Google Scholar 

  20. Dehghani, R., Khanlo, H.M., Fakhraei, J.: Active chaos control of a heavy articulated vehicle equipped with magnetorheological dampers. Nonlinear Dyn. 87(3), 1923–1942 (2017)

    Article  Google Scholar 

  21. Harb, A.M.: Nonlinear chaos control in a permanent magnet reluctance machine. Chaos Soliton. Fract. 19(5), 1217–1224 (2014)

    Article  Google Scholar 

  22. Liu, S., Chen, L.: Second-order terminal sliding mode control for networks synchronization. Nonlinear Dyn. 79(1), 205–213 (2014)

    Article  MathSciNet  Google Scholar 

  23. Danca, M.F., Chattopadhyay, J.: Chaos control of Hastings–Powell model by combining chaotic motions. Chaos 26(4), 45 (2016)

    Article  MathSciNet  Google Scholar 

  24. Chacón, R., Palmero, F., Cuevas-Maraver, J.: Impulse-induced localized control of chaos in starlike networks. Phys. Rev. E 93(6–1), 062210 (2016)

    Article  Google Scholar 

  25. Din, Q.: Neimark–Sacker bifurcation and chaos control in Hassell–Varley model. J. Differ. Equ. Appl. 23(4), 741–762 (2017)

    Article  MathSciNet  Google Scholar 

  26. Smaoui, N., Karouma, A., Zribi, M.: Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3279–3293 (2011)

    Article  MathSciNet  Google Scholar 

  27. Yuan, H., Liu, Y., Lin, T., Hu, T., Gong, L.: A new parallel image cryptosystem based on 5D hyper-chaotic system. Signal Process Image 52(C), 87–96 (2017)

    Article  Google Scholar 

  28. Zhang, S., Gao, T.: A coding and substitution frame based on hyper-chaotic systems for secure communication. Nonlinear Dyn. 84(2), 833–849 (2016)

    Article  MathSciNet  Google Scholar 

  29. Ma, J., Li, A., Pu, Z., Yang, L., Wang, Y.: A time-varying hyperchaotic system and its realization in circuit. Nonlinear Dyn. 62(3), 535–541 (2010)

    Article  Google Scholar 

  30. Jajarmi, A., Hajipour, M., Baleanu, D.: New aspects of the adaptive synchronization and hyperchaos suppression of a financial model. Chaos Soliton. Fract. 99, 285–296 (2017)

    Article  MathSciNet  Google Scholar 

  31. Liu, Y., Yang, Q., Pang, G.: A hyperchaotic system from the Rabinovich system. J. Comput. Appl. Math. 234, 101–113 (2010)

    Article  MathSciNet  Google Scholar 

  32. He, J., Chen, F.: A new fractional order hyperchaotic Rabinovich system and its dynamical behaviors. Int. J. NonLinear Mech. 95, 73–81 (2017)

    Article  Google Scholar 

  33. Udwadia, F.E.: Constrained motion of Hamiltonian systems. Nonlinear Dyn. 84, 1135–1145 (2016)

    Article  MathSciNet  Google Scholar 

  34. Guirao, J., Vera, J.: Stability of the Rydberg atom in the crossed magnetic and electric fields. Int. J. Quantum Chem. 111(5), 970–977 (2011)

    Article  Google Scholar 

  35. Zhuravlev, V., Petrov, A.: The Lagrange top and the Foucault pendulum in observed variables. Dokl. Phys. 59(1), 35–39 (2014)

    Article  Google Scholar 

  36. Popov, A.: The application of Hamiltonian dynamics and averaging to nonlinear shell vibration. Comput. Struct. 82(31–32), 2659–2670 (2004)

    Article  Google Scholar 

  37. Wiggins, S.: Global Bifurcations and Chaos: Analytical Methods. Springer, New York (1988)

    Book  Google Scholar 

  38. Gaspard, P., Briggs, M.E., Francis, M.K., Sengers, J.V., Gammon, R.W., Dorfman, J.R., Calabrese, R.V.: Experimental evidence for microscopic chaos. Nature 394(6696), 865–868 (1998)

    Article  Google Scholar 

  39. Niu, B., Jiang, W.: Nonresonant Hopf-Hopf bifurcation and a chaotic attractor in neutral functional differential equations. J. Math. Anal. Appl. 398(1), 362–371 (2013)

    Article  MathSciNet  Google Scholar 

  40. Barrio, R., Martinez, M., Serrano, S., Wilczak, D.: When chaos meets hyperchaos: 4D R\({\ddot{o}}\)ssler model. Phys. Lett. A 379, 2300–2305 (2015)

    Article  MathSciNet  Google Scholar 

  41. Huang, X., Zhao, Z., Wang, Z., Li, Y.: Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94, 13–21 (2012)

    Article  Google Scholar 

  42. Müller, A., Terze, Z.: Geometric methods and formulations in computational multibody system dynamics. Acta Mech. 227(2), 3327–3350 (2016)

    Article  MathSciNet  Google Scholar 

  43. Delvenne, J., Sandberg, H.: Finite-time thermodynamics of port-Hamiltonian systems. Physica D 267, 123–132 (2014)

    Article  MathSciNet  Google Scholar 

  44. Heras, U., Alvarez-Rodriguez, U., Solano, E., Sanz, M.: Genetic algorithms for digital quantum simulations. Phys. Rev. Lett. 116, 230504 (2016)

    Article  Google Scholar 

  45. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6(5278), 6383 (2014)

    Google Scholar 

  46. MarioFernández-Pendás, M., Akhmatskaya, E., Sanz-Serna, J.: Adaptive multi-stage integrators for optimal energy conservation in molecular simulations. J. Comput. Phys. 327, 434–449 (2016)

    Article  MathSciNet  Google Scholar 

  47. Menzeleev, A., Bel, l F., Miller, T.: Kinetically constrained ring-polymer molecular dynamics for non-adiabatic chemical reactions. J. Chem. Phys. 140(6), 455–493 (2014)

    Article  Google Scholar 

  48. DÁlessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65(3), 239–362 (2016)

    Article  Google Scholar 

  49. Kobe, D.H.: Helmholtz’s theorem revisited. Am. J. Phys. 54(6), 552–554 (1986)

    Article  Google Scholar 

  50. Chen, L., Liu, Z.: Control of a hyperchaotic discrete system. Appl. Math. Mech. Engl. 22(7), 741–746 (2001)

    Article  Google Scholar 

  51. Ma, J.: Hyperchaos synchronization and control using intermittent feedback. Acta Phys. Sin. Chin. Ed. 54(12), 5585–5590 (2005)

    Google Scholar 

  52. Ni, J., Liu, L., Liu, C., Hu, X., Shen, T.: Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system. Nonlinear Dyn. 86, 401–420 (2016)

    Article  Google Scholar 

  53. Marat, R., Jose, B.: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. Commun. Nonlinear Sci. Numer. Simul. 13, 1246–1255 (2008)

    Article  MathSciNet  Google Scholar 

  54. Tusset, A.M., Piccirillo, V., Bueno, Á.M., Brasil, R.M.: Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker. J. Vib. Control 22(17), 3621–3637 (2015)

    Article  MathSciNet  Google Scholar 

  55. Hassène, G., Safya, B.: Bifurcations and chaos in the semi-passive bipedal dynamic walking model under a modified OGY-based control approach. Nonlinear Dyn. 83(4), 1955–1973 (2016)

    Article  MathSciNet  Google Scholar 

  56. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  57. Barbashin, E.: Introduction to the Theory of Stability. Wolters-Noordhoff Publishing, Groningen (1970)

    MATH  Google Scholar 

  58. Yu, H., Cai, G., Li, Y.: Dynamic analysis and control of a new hyperchaotic finance system. Nonlinear Dyn. 67, 2171–2182 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Project is supported by the National Natural Science Foundation of China (Grant No. 11672032), Youth Science Foundations of Education Department of Hebei Province (No. QN2016265), Hebei Special Foundation “333 talent project” (No. A2016001123) and Scientific Research Funds of Hebei Institute of Architecture and Civil Engineering (Nos. 2016XJJQN03, 2016XJJYB05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wu, H. & Mei, F. Hyperchaos in constrained Hamiltonian system and its control. Nonlinear Dyn 94, 1703–1720 (2018). https://doi.org/10.1007/s11071-018-4451-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4451-3

Keywords

Navigation