Skip to main content
Log in

Observation of Hamiltonian chaos in wave–particle interaction

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The motion of charged particle in longitudinal waves is a paradigm for the transition to large scale chaos in Hamiltonian systems. Recently a test cold electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s) in a specially designed Traveling Wave Tube (TWT). The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The resonant velocity domain associated to a single wave is observed, as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a “devil’s staircase” behavior when increasing the excitation amplitude in agreement with numerical simulation. A new strategy for control of chaos by building barriers of transport which prevent electrons to escape from a given velocity region as well as its robustness are also successfully tested. Thus generic features of Hamiltonian chaos have been experimentally observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold V.I. (1974). Mathematical Methods of Classical Mechanics. Nauka, Moscow

    Google Scholar 

  • Chandre C., Ciraolo G., Doveil F., Lima R., Macor A. and Vittot M. (2005). Channeling chaos by building barriers. Phys. Rev. Lett. 94: 074101

    Article  ADS  Google Scholar 

  • Chandre C., Vittot M., Ciraolo G., Ghendrih P. and Lima R. (2006). Control of stochasticity in magnetic field lines. Nuclear Fusion 46: 33

    Article  ADS  Google Scholar 

  • Chirikov B.V. (1979). A universal instability of many dimensional oscillator systems. Phys. Rep. 52: 263–379

    Article  ADS  MathSciNet  Google Scholar 

  • Dimonte G. and Malmberg J.H. (1978). Destruction of trapping oscillations. Phys. Fluids 21: 1188–1206

    Article  MATH  ADS  Google Scholar 

  • Doveil F. (1981). Stochastic plasma heating by a large-amplitude standing wave. Phys. Rev. Lett. 46: 532–534

    Article  ADS  Google Scholar 

  • Doveil F. and Escande D.F. (1982). Fractal diagrams for non-integrable Hamiltonians. Phys. Lett. 90A: 226–230

    ADS  MathSciNet  Google Scholar 

  • Doveil F., Auhmani Kh., Macor A. and Guyomarc’h D. (2005a). Experimental observation of resonance overlap responsible for Hamiltonian chaos. Phys. Plasmas (Lett.) 12: 010702

    Article  ADS  Google Scholar 

  • Doveil F., Escande D.F. and Macor A. (2005b). Experimental observation of nonlinear synchronization due to a single wave. Phys. Rev. Lett. 94: 085003

    Article  ADS  Google Scholar 

  • Doveil F., Macor A. and Elskens Y. (2006). Direct observation of a “devil’s staircase” in wave–particle interaction. Chaos 16: 033103

    Article  ADS  Google Scholar 

  • Elskens Y. and Escande D.F. (2003). Microscopic Dynamics of Plasmas and Chaos. IoP Publishing, Bristol

    MATH  Google Scholar 

  • Escande D.F. (1985). Stochasticity in classical Hamiltonian systems: universal aspects. Phys. Rep. 121: 165–261

    Article  ADS  MathSciNet  Google Scholar 

  • Escande D.F. and Doveil F. (1981). Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems. J. Stat. Phys. 26: 257–284

    Article  ADS  MathSciNet  Google Scholar 

  • Gilmour A.S. Jr (1994). Principles of Travelling Wave Tubes. Artech House, Boston, London

    Google Scholar 

  • Guyomarc’h D. and Doveil F. (2000). A trochoidal analyzer to measure the electron beam energy distribution in a traveling wave tube. Rev. Sci. Instrum. 71: 4087–4091

    Article  ADS  Google Scholar 

  • Laskar J., Froeschle C. and Celletti A. (1992). The measure of chaos by the numerical analysis of the fundamental frequencies—application to the standard mapping. Physica D 56: 253–269

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Macor, A.: D’un faisceau test à l’auto-cohérence dans l’interaction onde-particule. PhD dissertation, Université de Provence (2007)

  • Macor A., Doveil F. and Elskens Y. (2005). Electron climbing a “devil’s staircase” in wave–particle interaction. Phys. Rev. Lett. 95: 264102

    Article  ADS  Google Scholar 

  • Macor A., Doveil F., Chandre C., Ciraolo G., Lima R. and Vittot M. (2007a). Channeling chaotic transport in a wave–particle experiment. Eur. Phys. J. D 41: 519–530

    Article  ADS  Google Scholar 

  • Macor A., Doveil F. and Garabedian E. (2007b). Electron packets to investigate nonlinear phenomena in wave–particle interaction. Nonlinear Phenomena in Complex Systems 10: 180–183

    Google Scholar 

  • Malmberg J.H., Jensen T.H. and O’Neil T.M. (1966). Plasma Physics and Controlled Nuclear Fusion Research, vol 1. IAEA, Vienna, pp. 683

    Google Scholar 

  • Mynick H.E. and Kaufman A.N. (1978). Soluble theory of nonlinear beam-plasma interaction. Phys. Fluids 21: 653–663

    Article  MATH  ADS  Google Scholar 

  • Pierce J.R. (1950). Travelling Wave Tubes. Van Nostrand, New York

    Google Scholar 

  • Skiff F., Anderegg F. and Tran M.Q. (1987). Stochastic particle-acceleration in an electrostatic wave. Phys. Rev. Lett. 58: 1430–1433

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Doveil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doveil, F., Macor, A. & Aïssi, A. Observation of Hamiltonian chaos in wave–particle interaction. Celest Mech Dyn Astr 102, 255–272 (2008). https://doi.org/10.1007/s10569-008-9130-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-008-9130-0

Keywords

PACS

Navigation