Skip to main content
Log in

Classifying orbits in the classical Hénon–Heiles Hamiltonian system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Hénon–Heiles potential is undoubtedly one of the most simple, classical and characteristic Hamiltonian systems. The aim of this work was to reveal the influence of the value of the total orbital energy, which is the only parameter of the system, on the different families of orbits, by monitoring how the percentage of chaotic orbits, as well as the percentages of orbits composing the main regular families evolve when energy varies. In particular, we conduct a thorough numerical investigation distinguishing between ordered and chaotic orbits, considering only bounded motion for several energy levels. The smaller alignment index (SALI) was computed by numerically integrating the equations of motion as well as the variational equations to extensive samples of orbits in order to distinguish safely between ordered and chaotic motion. In addition, a method based on the concept of spectral dynamics that utilizes the Fourier transform of the time series of each coordinate is used to identify the various families of regular orbits and also to recognize the secondary resonances that bifurcate from them. Our exploration takes place both in the physical \((x,y)\) and the phase \((y,\dot{y})\) space for a better understanding of the orbital properties of the system. It was found that for low energy levels, the motion is entirely regular being the box orbits the most populated family, while as the value of the energy increases chaos and several resonant families appear. We also observed, that the vast majority of the resonant orbits belong in fact in bifurcated families of the main 1:1 resonant family. We have also compared our results with previous similar outcomes obtained using different chaos indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. If \(S\) is the \(2N\) dimensional phase space (four dimensional, in our case) where the orbits of a dynamical system evolve on, then a deviation vector \(\mathbf{w}\), which describes a small perturbation of a specific orbit \(\mathbf{x}\), evolves on a \(2N\) dimensional space \(T_{x}S\) tangent to \(S\).

  2. Generally, dynamical methods are broadly split into two types: (i) those based on the evolution of sets of deviation vectors in order to characterize an orbit and (ii) those based on the frequencies of the orbits which extract information about the nature of motion only through the basic orbital elements without the use of deviation vectors.

  3. For every orbital family there is a parent (or mother) periodic orbit, that is, an orbit that describes a closed figure. Perturbing the initial conditions which define the exact position of a periodic orbit we generate quasi-periodic orbits that belong to the same orbital family and librate around their closed parent periodic orbit.

  4. It is known that in dynamical systems with a finite energy of escape where escape is possible (open Hamiltonian systems), chaos appears and dominates at values of energy very close to the critical escape energy which determines the transition from bounded to unbounded motion.

References

  1. Aguirre, J., Vallejo, J.C., Sanjuán, M.A.F.: Wada basins and chaotic invariant sets in the Hénon–Heiles system. Phys. Rev. E 64, 066208-1–066208-11 (2001)

    Article  Google Scholar 

  2. Aguirre, J., Sanjuán, M.A.F.: Limit of small exits in open Hamiltonian systems. Phys. Rev. E 67, 056201-1–056201-7 (2003)

    Article  Google Scholar 

  3. Aguirre, J., Vallejo, J.C., Sanjuán, M.A.F.: Wada basins and unpredictability in Hamiltonian and dissipative systems. Int. J. Mod. Phys. B 17, 4171–4175 (2003)

    Article  MATH  Google Scholar 

  4. Aguirre, J., Viana, R.L., Sanjuán, M.A.F.: Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81, 333–386 (2009)

  5. Armbruster, D., Guckenheimer, J., Kim, S.: Chaotic dynamics in systems with square symmetry. Phys. Lett. A 140, 416–420 (1989)

    Article  MathSciNet  Google Scholar 

  6. Barrio, R.: Sensitivity tools vs. Poincaré sections. Chaos Solitons Fractals 25, 711–726 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barrio, R., Blesa, F., Serrano, S.: Fractal structures in the Hénon–Heiles Hamiltonian. Europhys. Lett. 82, 10003-1–10003-6 (2008)

    Article  Google Scholar 

  8. Barrio, R., Blesa, F., Serrano, S.: Bifurcations and safe regions in open Hamiltonians. New J. Phys. 11, 053004-1–053004-12 (2009)

    Article  Google Scholar 

  9. Binney, J., Spergel, D.: Spectral stellar dynamics. ApJ 252, 308–321 (1982)

    Article  Google Scholar 

  10. Binney, J., Spergel, D.: Spectral stellar dynamics. II. The action integrals. MNRAS 206, 159–177 (1984)

    Article  Google Scholar 

  11. Binney, J., Tremaine, S.: Galactic Dynamics, 2nd edn. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  12. Blesa, F., Seoane, J.M., Barrio, R., Sanjuán, M.A.F.: To escape or not to escape, that is the question—perturbing the Hénon–Heiles Hamiltonian. Int. J. Bifurcat. Chaos 22, 1230010-1–1230010-9 (2012)

    Article  Google Scholar 

  13. Caranicolas, N.D., Barbanis, B.: Periodic orbits in nearly axisymmetric stellar systems. A&A 114, 360–366 (1982)

    MATH  MathSciNet  Google Scholar 

  14. Caranicolas, N.D., Zotos, E.E.: Unveiling the influence of dark matter in axially symmetric galaxies. PASA 30, 49-1–49-14 (2013)

    Article  Google Scholar 

  15. Carpintero, D.D., Aguilar, L.A.: Orbit classification in arbitrary 2D and 3D potentials. MNRAS 298, 1–21 (1998)

    Article  Google Scholar 

  16. Chang, Y.F., Tabor, M., Weiss, J.: Analytic structure of the Hénon-Heiles Hamiltonian in integrable and nonintegrable regimes. J. Math. Phys. 23, 531–538 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Coccollo, M., Seoane, J.M., Sanjuán, M.A.F.: Controlling unpredictability in the randomly driven Hénon–Heiles system. Commun. Nonlinear Sci. Numer. Simul. 18, 3449–3457 (2013)

    Article  MathSciNet  Google Scholar 

  18. Conte, R., Musette, M., Verhoeven, C.: Explicit integration of the Hénon–Heiles Hamiltonians. J. Nonlinear Math. Phys. 12, 212–227 (2005)

    Article  MathSciNet  Google Scholar 

  19. Contopoulos, G., Barbanis, B.: Resonant systems with three degrees of freedom. A&A 153, 44–54 (1985)

    MATH  MathSciNet  Google Scholar 

  20. Contopoulos, G., Magnenat, P.: Simple three-dimensional periodic orbits in a galactic-type potential. CeMec 37, 387–414 (1985)

    MATH  MathSciNet  Google Scholar 

  21. Contopoulos, G., Mertzanides, C.: Inner Lindblad resonance in galaxies: nonlinear theory. II. Bars. A&A 61, 477–485 (1977)

    MathSciNet  Google Scholar 

  22. de Moura, A.P.S., Letelier, P.S.: Fractal basins in Hénon–Heiles and other polynomial potentials. Phys. Lett. A 256, 362–368 (1999)

    Article  MathSciNet  Google Scholar 

  23. Fordy, A.P.: The Hénon–Heiles system revisited. Physica D 52, 204–210 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hénon, M., Heiles, C.: The applicability of the third integral of motion: some numerical experiments. Astron. J. 69, 73–79 (1964)

    Article  Google Scholar 

  25. Lees, J.F., Schwarzschild, M.: The orbital structure of galactic halos. ApJ 384, 491–501 (1992)

    Article  Google Scholar 

  26. Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer, New York (1992)

    Book  MATH  Google Scholar 

  27. Muzzio, J.C., Carpintero, D.D., Wachlin, F.C.: Spatial structure of regular and chaotic orbits in a self-consistent triaxial stellar system. CeMDA 91, 173–190 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Press, H.P., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN 77, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  29. Ravoson, V., Gavrilov, L., Caboz, R.: Separability and Lax pairs for Hénon–Heiles system. J. Math. Phys. 34, 2385–2393 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  30. Seoane, J.M., Aguirre, J., Sanjuán, M.A.F., Lai, Y.C.: Basin topology in dissipative chaotic scattering. Chaos 16, 023101-1–023101-8 (2006)

    Article  Google Scholar 

  31. Seoane, J.M., Sanjuán, M.A.F., Lai, Y.C.: Fractal dimension in dissipative chaotic scattering. Phys. Rev. E 76, 016208-1–016208-6 (2007)

    Article  Google Scholar 

  32. Seoane, J.M., Sanjuán, M.A.F.: Exponential decay and scaling laws in noisy chaotic scattering. Phys. Lett. A 372, 110–116 (2008)

    Article  MATH  Google Scholar 

  33. Seoane, J.M., Huang, L., Sanjuán, M.A.F., Lai, Y.C.: Effects of noise on chaotic scattering. Phys. Rev. E 79, 047202-1–047202-4 (2009)

    Article  Google Scholar 

  34. Seoane, J.M., Sanjuán, M.A.F.: Escaping dynamics in the presence of dissipation and noisy in scattering systems. Int. J. Bifurcat. Chaos 9, 2783–2793 (2010)

    Article  Google Scholar 

  35. Šidlichovský, M., Nesvorný, D.: Frequency modified Fourier transform and its applications to asteroids. CeMDA 65, 137–148 (1996)

    Article  Google Scholar 

  36. Skokos, C.: Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A Math. Gen. 34, 10029–10043 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Toda, M.: Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22, 431–436 (1967)

    Article  Google Scholar 

  38. Wojciechowski, S.: Separability of an integrable case of the Henon–Heiles system. Phys. Lett. A 100, 277–278 (1984)

    Article  MathSciNet  Google Scholar 

  39. Zotos, E.E.: Revealing the evolution, the stability and the escapes of families of resonant periodic orbits in Hamiltonian systems. Nonlinear Dyn. 73, 931–962 (2013)

    Article  MathSciNet  Google Scholar 

  40. Zotos, E.E., Caranicolas, N.D.: Revealing the influence of dark matter on the nature of motion and the families of orbits in axisymmetric galaxy models. A&A 560, 110-1–110-8 (2013)

    Article  Google Scholar 

  41. Zotos, E.E., Caranicolas, N.D.: Determining the nature of orbits in disk galaxies with non spherical nuclei. Nonlinear Dyn. 76, 323–344 (2014)

    Article  MathSciNet  Google Scholar 

  42. Zotos, E.E., Carpintero, D.D.: Orbit classification in the meridional plane of a disk galaxy model with a spherical nucleus. CeMDA 116, 417–438 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to express his warmest thanks to all the anonymous referees for the careful reading of the manuscript and for all the apt suggestions and comments which allowed us to improve both the quality and the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euaggelos E. Zotos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotos, E.E. Classifying orbits in the classical Hénon–Heiles Hamiltonian system. Nonlinear Dyn 79, 1665–1677 (2015). https://doi.org/10.1007/s11071-014-1766-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1766-6

Keywords

Navigation