Skip to main content
Log in

Homoclinic orbits and an invariant chaotic set in a new 4D piecewise affine systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

It is a challenging task to prove mathematically the existence of homoclinic orbits in a high-dimensional dynamical system. Here we first introduce a new four-dimensional (4D) piecewise affine system and then establishes useful yet general conditions on the existence of an orbit homoclinic to a spiral saddle-foci and chaos in the system. Rigorously mathematical analysis is also provided. A 4D example with both a homoclinic orbit and an invariant chaotic set is used to depict the effectiveness of analysis and prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MATH  Google Scholar 

  2. Chua, L.O., Ying, R.D.: Canonical piecewise-linear analysis. IEEE Trans. Circuits Syst. 30(3), 125–140 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Schiff, S.J., Jerger, K., Duong, D.H., Chang, T., Spano, M.L., Ditto, W.L.: Controlling chaos in the brain. Nature 8, 615–620 (1994)

    Article  Google Scholar 

  4. Yu, S.M., Lü, J.H., Chen, G.R., Yu, X.H.: Design and implementation of grid multiwing butterfly chaotic attractors from a piecewise lorenz system. IEEE Trans. Circuits Syst. II 57(10), 314–318 (2010)

    Article  Google Scholar 

  5. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Boulder (2014)

    MATH  Google Scholar 

  6. Vaseghi, B., Pourmina, M.A., Mobayen, S.: Secure communication in wireless sensor networks based on chaos synchronization using adaptive sliding mode control. Nonlinear Dyn. 89, 1689–1704 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ren, H.P., Bai, C., Liu, J., Baptista, M.S., Grebogi, C.: Experimental validation of wireless communication with chaos. Chaos 26, 083117 (2016)

    Article  MathSciNet  Google Scholar 

  8. Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcat. Chaos 9(7), 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurcat. Chaos 12(3), 659–661 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, Q.G., Chen, G.R., Zhou, T.S.: A unified Lorenz-type system and its canonical form. Int. J. Bifurcat. Chaos 16, 2855–2871 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang, Q.G., Chen, G.R.: A chaotic system with one saddle and two saddle node-foci. Int. J. Bifurcat. Chaos 18, 1393–1414 (2008)

    Article  MATH  Google Scholar 

  12. Liu, Y.J., Yang, Q.G.: Dynamics of the Lü system on the invariant algebraic surface and at infinity. Int. J. Bifurcat. Chaos 21, 2559–2582 (2011)

    Article  MATH  Google Scholar 

  13. Wei, Z.C., Yang, Q.G.: Dynamical analysis of the generalized Sprott C system with only two stable equilibria. Nonlinear Dyn. 68, 543–554 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, Q.G., Chen, Y.M.: Complex dynamics in the unified Lorenz-type system. Int. J. Bifurcat. Chaos 24(4), 1450055 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear Sci. 28(1), 166–174 (2015)

    Article  MathSciNet  Google Scholar 

  16. Yang, Q.G., Bai, M.L.: A new 5D hyperchaotic system based on modified generalized Lorenz system. Nonlinear Dyn. 88(1), 189–221 (2017)

    Article  MATH  Google Scholar 

  17. Llibre, J., Ponce, E., Teruel, A.E.: Horseshoes near homoclinic orbits for piecewise linear differential systems in \(\mathbb{R}^3\). Int. J. Bifurcat. Chaos 17(4), 1171–1184 (2007)

    Article  MATH  Google Scholar 

  18. Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics (Part I). World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  19. Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics (Part II). World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  20. Wiggins, S.: Global Bifurcations and Chaos: Analytical Methods. Springer, Berlin (2013)

    MATH  Google Scholar 

  21. Bella, G., Mattana, P., Venturi, B.: Shilnikov chaos in the Lucas model of endogenous growth. J. Econ. Theory 172, 451–477 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Deng, B., Han, M.A., Hsu, S.B.: Numerical proof for chemostat chaos of Shilnikov’s type. Chaos 27(3), 033106 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wei, Z.C., Moroz, I., Sprott, J.C., Wang, Z., Zhang, W.: Detecting hidden chaotic regions and complex dynamics in the self-exciting homopolar disc dynamo. Int. J. Bifurcat. Chaos 27(2), 1730008 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, Q.G., Yang, T.: Complex dynamics in a generalized Langford system. Nonlinear Dyn. 91(4), 2241–2270 (2018)

    Article  MATH  Google Scholar 

  25. Wilczak, D., Serrano, S., Barrio, R.: Coexistence and dynamical connections between hyperchaos and chaos in the 4D Rössler system: a computer-assisted proof. SIAM J. Appl. Dyn. Syst. 15(1), 356–390 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Robinson, R.C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  27. Hastings, S.P., Troy, W.C.: A shooting approach to chaos in the Lorenz equations. J. Differ. Equ. 127, 41–53 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Leonov, G.A.: Shilnikov chaos in Lorenz-like systems. Int. J. Bifurcat. Chaos 23(3), 1350058 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224, 1421–1458 (2015)

    Article  Google Scholar 

  30. Chen, Y.M.: The existence of homoclinic orbits in a 4D Lorenz-type hyperchaotic system. Nonlinear Dyn. 87(3), 1445–1452 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Carmona, V., Sánchez, F.F., Medina, E.G., Teruel, A.E.: Existence of homoclinic connections in continuous piecewise linear systems. Chaos 20, 013124 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bernardo, M.D., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications, vol. 163. Springer, Berlin (2008)

    MATH  Google Scholar 

  33. Huan, S.M., Li, Q.D., Yang, X.S.: Chaos in three-dimensional hybrid systems and design of chaos generators. Nonlinear Dyn. 69(4), 1915–1927 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, T.T., Yang, X.S.: A new class of 3-dimensional piecewise affine systems with homoclinic orbits. Discrete Contin. Dyn. Ser. A 36(9), 5119–5129 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Huan, S.M., Yang, X.S.: Existence of chaotic invariant set in a class of 4-dimensional piecewise linear dynamical systems. Int. J. Bifurcat. Chaos 24(12), 1450158 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu, T.T., Yang, X.S.: Construction of a class of four-dimensional piecewise affine systems with homoclinic orbits. Int. J. Bifurcat. Chaos 26(6), 1650099 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

This study was supported by Natural Science Foundation of China (No. 11671149) and Natural Science Foundation of Guangdong Province (No. 2017A030312006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qigui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Lu, K. Homoclinic orbits and an invariant chaotic set in a new 4D piecewise affine systems. Nonlinear Dyn 93, 2445–2459 (2018). https://doi.org/10.1007/s11071-018-4335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4335-6

Keywords

Navigation