Skip to main content
Log in

Sliding homoclinic orbits and bifurcations of three-dimensional piecewise affine systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Sliding dynamics is a peculiar phenomenon to discontinuous dynamical systems, while homoclinic orbits play a role in studying the global dynamics of dynamical systems. This paper provides a method to ensure the existence of sliding homoclinic orbits of three-dimensional piecewise affine systems. In addition, sliding cycles are obtained by bifurcations of the systems with sliding homoclinic orbits to saddles. Two examples with simulations of sliding homoclinic orbits and sliding cycles are provided to illustrate the effectiveness of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Battelli, F., Fečkan, M.: Bifurcation and chaos near sliding homoclinics. J. Differ. Equ. 248, 2227–2262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Battelli, F., Fečkan, M.: An example of chaotic behaviour in presence of a sliding homoclnic orbits. Annali. di. Matematica. 189, 615–642 (2010)

    Article  MATH  Google Scholar 

  3. Bonet-Reves, C., Seara, T.M.: Regularization of sliding global bifurcations derived from the local fold singularity of filippov systems. Discrete Cont. Dyn. 36, 3545–3601 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belykh, V.N., Barabash, N.V., Belykh, I.V.: Sliding homoclinic bifurcations in a Lorenz-type system: analytic proofs. Chaos. 31: 043117 (1–17) (2021)

  5. Carmona, V., Fernández-Sánchez, F., Teruel, García-Medina, E., Antonio, E.: Existence of homoclinic connections in continuous piecewise linear systems, Chaos. 20, 013124(1–8) (2010)

  6. Colombo, A., Jeffrey, M.R.: Nondeterministic chaos, and the two-fold singularity in piecewise smooth flows. Siam J. Appl. Dyn. Syst. 10, 423–451 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carvalho, T., Novaes, D.D., Goncalves, L.F.: Sliding Shilnikov connection in Filippov-type predator-prey model. Nonlinear Dyn. 100, 2973–2987 (2020)

    Article  Google Scholar 

  8. Di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  9. Di Bernardo, M., Montanaro, U., Ortega, R., Santini, S.: Extended hybrid model reference adaptive control of piecewise affine systems. Nonlinear Anal. Hybrid. 21, 11–21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Filippov, A.F.: Differential equations with discontinuous right-hand sides. Kluwer Acdemic Publishers, Dordrecht (1988)

    Book  MATH  Google Scholar 

  11. Glendinning, P., Kowalczyk, P., Nordmark, A.B.: Attractors near grazing-sliding bifurcations. Nonlinearity. 25, 1867–1885 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Glendinning, P.A.: Shilnikov chaos, filippov sliding and boundary equilibrium bifurcations. Eur. J. Appl. Math. 29, 757–777 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huan, S.M., Yang, X.-S.: Existence of chaotic invariant set in a class of 4-dimensional piecewise linear dynamical systems. Int. J. Bifurc. Chaos. 24, 1450158 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeffrey, M.R., Hogan, S.J.: The geometry of generic sliding bifurcations. Siam Rev. 53, 505–525 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One parameteric bifurcations in planar Filippov systems. Int. J. Bifurc. Chaos. 13, 2157–2188 (2003)

    Article  MATH  Google Scholar 

  16. Li, T.C., Chen, G.T., Chen, G.R.: On homoclinic and heteroclinic orbits of Chen’s system. Int. J. Bifurc. Chaos. 16, 3035–3041 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, J.B., Chen, F.J.: Exact homoclinic orbits and heteroclinic families for a third-order system in the Chazy class XI (N=3). Int. J. Bifurc. Chaos. 21, 3305–3322 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, W., Huang, L., Wang, J.: Global asymptotical stability and sliding bifurcation analysis of a general filippov-type predator-prey model with a refuge. Appl. Math. Comput. 405, 126263 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Novaes, D.D., Ponce, G., Varão, R.: Chaos induced by sliding phenomena in filippov systems. J. Dyn. Diff. Equ. 29, 1569–1583 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Novaes, D.D., Teixeira, M.A.: Shilnikov problem in Filippov dynamical systems. Chaos. 29, 063110 (2019)

  21. Pi, D., Yu, J., Zhang, X.: On the sliding bifurcation of a class of planar Filippov systems. Int. J. Bifur. Chaos. 23, 1350040 (2013)

  22. Pulecio-Montoya, A.M., López-Montenegro, L.E., Cerón-Caicedo, J.: Sliding dynamic in a 3-dimensional epidemiological system. Math. Comput. Simul. 185, 570–582 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qiao, Z., Zhu, D., Lu, Q.: Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete Cont. Dyn-B. 17, 1009–1025 (2012)

  24. Simpson, D.J.W.: Grazing-sliding bifurcations creating infinitely many attractors. Int. J. Bifurcat. Chaos. 27, 1730042 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wiggins, S.: Global Bifurcations and Chaos Analytical Methods. Springer-Verlag, New York (1988)

    Book  MATH  Google Scholar 

  26. Wei, L., Zhang, X.: Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete Cont. Dyn. 36, 2803–2825 (2016)

  27. Wu, T., Yang, X.-S.: A new class of 3-dimensional piecewise affine systems with homoclinic orbits. Discrete Cont. Dyn. 36, 5119–5129 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu, T., Yang, X.-S.: Construction of a class of four-dimensional piecewise affine systems with homoclinic orbits. Int. J. Bifurcat. Chaos. 26, 1650099 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu, T., Yang, X.-S.: Horseshoes in 4-dimensional piecewise affine systems with bifocal heteroclinic cycles. Chaos 28, 113120 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, T., Yang, X.-S.: On the existence of homoclinic orbits in n-dimensional piecewise affine systems. Nonlinear Anal. Hybrid. 27, 366–389 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (11801329, 11301196) and Natural Science Foundation of Shandong province (ZR2018BA002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiantian Wu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with respect to the research. All authors contributed to the study conception and design. Analysis and writing were performed by Tiantian Wu and Songmei Huan. Simulations were performed by Xiaojuan Liu. All authors read and approved the final manuscript. The datasets generated during the current study are available in the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The proof of Lemma 1

The sliding system (12) can be written as

$$\begin{aligned}{} & {} \left( \begin{array}{cc}\dot{y} \\ \dot{z}\\ \end{array}\right) = \left( \begin{array}{cc} a_{22}y+a_{23}z+a_2\\ a_{32}y+a_{33}z+a_3\\ \end{array}\right) \\ {}{} & {} -\frac{a_{12}y+a_{13}z+a_1}{(a_{12}-b_{12})y+(a_{13}-b_{13})z+a_1-b_1}\times \\{} & {} \left( \begin{array}{cc} (a_{22}-b_{22})y+(a_{23}-b_{23})z+a_2-b_2\\ (a_{32}-b_{32})y+(a_{33}-b_{33})z+a_3-b_3\\ \end{array}\right) , \end{aligned}$$

for \(\textbf{x}_s=(0\quad y\quad z)^\intercal \in \Sigma _{s}\), where \(\textbf{A}=(a_{ij})_{3\times 3}\), \(\mathbf {B(\mu )}=(b_{ij})_{3\times 3}\), \(\textbf{a}=(a_i)_{3\times 1}\) and \(\textbf{b}(\mu )=(b_i)_{3\times 1}\), \(i, j=1, 2, 3\).

Hence, system (12) is an affine system if and only if there exist constants \(k_1\), \(k_2\) and \(k_3\) such that

$$\begin{aligned} \frac{a_{12}y+a_{13}z+a_1}{(a_{12}-b_{12})y+(a_{13}-b_{13})z+a_1-b_1}=k_1, \end{aligned}$$
(1)

or

$$\begin{aligned}{} & {} \frac{(a_{22}-b_{22})y+(a_{23}-b_{23})z+a_2-b_2}{(a_{12}-b_{12})y+(a_{13}-b_{13})z+a_1-b_1}=k_2, \end{aligned}$$
(2)
$$\begin{aligned}{} & {} \frac{(a_{32}-b_{32})y+(a_{33}-b_{33})z+a_3-b_3}{(a_{12}-b_{12})y+(a_{13}-b_{13})z+a_1-b_1}=k_3. \end{aligned}$$
(3)

Since \(\textbf{x}_s=(0\quad y\quad z)^\intercal \in \Sigma _{s}\), then

$$\begin{aligned} (a_{12}y+a_{13}z+a_1)(b_{12}y+b_{13}z+a_1)<0, \end{aligned}$$

and \(0<k_1<1\). If Eq. (1) holds, then

$$\begin{aligned} \frac{a_{12}}{b_{12}}=\frac{a_{13}}{b_{13}}=\frac{a_1}{b_1}=\frac{k_1}{k_1-1}<0. \end{aligned}$$
(4)

If Eqs. (2) and (3) hold, then

$$\begin{aligned}{} & {} \frac{a_{22}-b_{22}}{a_{12}-b_{12}}=\frac{a_{23}-b_{23}}{a_{13}-b_{13}}=\frac{a_2-b_2}{a_1-b_1}=k_2, \end{aligned}$$
(5)
$$\begin{aligned}{} & {} \frac{a_{32}-b_{32}}{a_{12}-b_{12}}=\frac{a_{33}-b_{33}}{a_{13}-b_{13}}=\frac{a_2-b_2}{a_1-b_1}=k_3. \end{aligned}$$
(6)

And then the sliding system (12) is

$$\begin{aligned} \left( \begin{array}{cc}\dot{y} \\ \dot{z}\\ \end{array}\right) =\left( \begin{array}{cc} a_{22}y+a_{23}z+a_2\\ a_{32}y+a_{33}z+a_3\\ \end{array}\right) \nonumber \\ -(a_{12}y+a_{13}z+a_1) \left( \begin{array}{cc} \frac{a_2-b_2}{a_1-b_1}\\ \frac{a_2-b_2}{a_1-b_1}\\ \end{array}\right) . \end{aligned}$$
(7)

Lemma 1 is proved.

Appendix B: The proof of Lemma 2

The sliding system (13) can be written as

$$\begin{aligned} \left( \begin{array}{ccc}\dot{y} \\ \dot{z}\\ \end{array}\right)= & {} (b_{12}y+b_{13}z+b_1)\left( \begin{array}{cc} a_{22}y+a_{23}z+a_2\\ a_{32}y+a_{33}z+a_3\\ \end{array}\right) \\+ & {} (a_{12}y+a_{13}z+a_1)\left( \begin{array}{cc} b_{22}y+b_{23}z+b_2\\ b_{32}y+b_{33}z+b_3\\ \end{array}\right) ,\\= & {} \left( \begin{array}{ccc} (b_{12}a_{22}-a_{12}b_{22})y^2+(b_{13}a_{23}-a_{13}b_{23})z^2\\ (b_{12}a_{32}-a_{12}b_{32})y^2+(b_{13}a_{33}-a_{13}b_{33})z^2\\ \end{array}\right) \\+ & {} \left( \begin{array}{ccc} (b_{13}a_{22}+b_{12}a_{23}-a_{12}b_{23}-a_{13}b_{22})yz\\ (b_{13}a_{32}+b_{12}a_{33}-a_{12}b_{33}-a_{13}b_{32})yz\\ \end{array}\right) \\+ & {} \left( \begin{array}{ccc} (b_1a_{22}+b_{12}a_2-a_1b_{22}-a_{12}b_2)y\\ (b_1a_{32}+b_{12}a_3-a_1b_{32}-a_{12}b_3)y\\ \end{array}\right) \\+ & {} \left( \begin{array}{ccc} (b_1a_{23}+b_{13}a_2-a_1b_{23}-a_{13}b_2)z+b_1a_2-a_1b_2\\ (b_1a_{33}+b_{13}a_3-a_1b_{33}-a_{13}b_3)z+b_1a_3-a_1b_3\\ \end{array}\right) . \end{aligned}$$

for \(\textbf{x}_s=(0\quad y\quad z)^\intercal \in \Sigma _{s}\), where \(\textbf{A}=(a_{ij})_{3\times 3}\), \(\mathbf {B(\mu )}=(b_{ij})_{3\times 3}\), \(\textbf{a}=(a_i)_{3\times 1}\) and \(\textbf{b}(\mu )=(b_i)_{3\times 1}\), \(i, j=1, 2, 3\).

Hence, system (13) is an affine system if and only if

$$\begin{aligned}{} & {} b_{12}a_{22}-a_{12}b_{22}=0,b_{12}a_{32}-a_{12}b_{32}=0, \\{} & {} b_{13}a_{23}-a_{13}b_{23}=0,b_{13}a_{33}-a_{13}b_{33}=0, \\{} & {} b_{13}a_{22}+b_{12}a_{23}-a_{12}b_{23}-a_{13}b_{22}=0, \\{} & {} b_{13}a_{32}+b_{12}a_{33}-a_{12}b_{33}-a_{13}b_{32}=0. \end{aligned}$$

And then the sliding system (13) is

$$\begin{aligned} \left( \begin{array}{ccc}\dot{y} \\ \dot{z}\\ \end{array}\right)= & {} \left( \begin{array}{ccc} (b_1a_{22}+b_{12}a_2-a_1b_{22}-a_{12}b_2)y\\ (b_1a_{32}+b_{12}a_3-a_1b_{32}-a_{12}b_3)y\\ \end{array}\right) \nonumber \\+ & {} \left( \begin{array}{ccc} (b_1a_{23}+b_{13}a_2-a_1b_{23}-a_{13}b_2)z+b_1a_2-a_1b_2\\ (b_1a_{33}+b_{13}a_3-a_1b_{33}-a_{13}b_3)z+b_1a_3-a_1b_3\\ \end{array}\right) . \nonumber \\ \end{aligned}$$
(1)

Lemma 2 is proved.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Huan, S. & Liu, X. Sliding homoclinic orbits and bifurcations of three-dimensional piecewise affine systems. Nonlinear Dyn 111, 9011–9024 (2023). https://doi.org/10.1007/s11071-023-08301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08301-4

Keywords

Navigation