Skip to main content
Log in

Derivation of nonlinear damping from viscoelasticity in case of nonlinear vibrations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Experiments show a strong increase in damping with the vibration amplitude during nonlinear vibrations of beams, plates and shells. This is observed for large size structures but also for micro- and nanodevices. The present study derives nonlinear damping from viscoelasticity by using a single-degree-of-freedom model obtained from standard linear solid material where geometric nonlinearity is inserted in. The solution of the problem is initially reached by a third-order harmonic balance method. Then, the equation of motion is obtained in differential form, which is extremely useful in applications. The damping model developed is nonlinear and the parameters are identified from experiments. Experimental and numerical results are compared for forced vibration responses measured for two different continuous structural elements: a free-edge plate and a shallow shell. The free-edge plate is interesting since it represents a case with no energy escape through the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alijani, F., Amabili, M., Balasubramanian, P., Carra, S., Ferrari, G., Garziera, R.: Damping for large-amplitude vibrations of plates and curved panels, part 1: modelling and experiments. Int. J. Non-Linear Mech. 85, 23–40 (2016)

    Article  Google Scholar 

  2. Amabili, M., Alijani, F., Delannoy, J.: Damping for large-amplitude vibrations of plates and curved panels, part 2: identification and comparison. Int. J. Non-Linear Mech. 85, 226–240 (2016)

    Article  Google Scholar 

  3. Davidovikj, D., Alijani, F., Cartamil-Bueno, S.J., van der Zant, H.S.J., Amabili, M., Steeneken, P.G.: Non-linear dynamics for mechanical characterization of two-dimensional materials. Nat. Commun. 8, 1253 (2017). https://doi.org/10.1038/s41467-017-01351-4

    Article  Google Scholar 

  4. Eichler, A., Moser, J., Chaste, J., Zdrojek, M., Wilson-Rae, I., Bachtold, A.: Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 6, 339–342 (2011)

    Article  Google Scholar 

  5. Ravindra, B., Mallik, A.K.: Role of nonlinear dissipation in soft Duffing oscillators. Phys. Rev. E 49, 4950–4953 (1994)

    Article  Google Scholar 

  6. Trueba, J.L., Rams, J., Sanjuan, M.A.F.: Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators. Int. J. Bifurc. Chaos 10, 2257–2267 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Zaitsev, S., Shtempluck, O., Buks, E., Gottlieb, O.: Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn. 67, 859–883 (2012)

    Article  MATH  Google Scholar 

  8. Amabili, M.: Nonlinear vibrations of viscoelastic rectangular plates. J. Sound Vib. 362, 142–156 (2016)

    Article  Google Scholar 

  9. Balasubramanian, P., Ferrari, G., Amabili, M., Del Prado, Z.J.G.N.: Experimental and theoretical study on large amplitude vibrations of clamped rubber plates. Int. J. Non-Linear Mech. 94, 36–45 (2017)

    Article  Google Scholar 

  10. Xia, Z.O., Łukasiewicz, S.: Non-linear, free, damped vibrations of sandwich plates. J. Sound Vib. 175, 219–232 (1994)

    Article  MATH  Google Scholar 

  11. Xia, Z.O., Łukasiewicz, S.: Nonlinear damped vibrations of simply-supported rectangular sandwich plates. Nonlinear Dyn. 8, 417–433 (1995)

    Google Scholar 

  12. Gottlieb, O., Habib, G.: Non-linear model-based estimation of quadratic and cubic damping mechanisms governing the dynamics of a chaotic spherical pendulum. J. Vib. Control 18, 536–547 (2012)

    Article  MathSciNet  Google Scholar 

  13. Lifshitz, R., Cross, M.C.: Review of nonlinear dynamics and complexity. In: Schuster, H.G. (ed.) Chap. 1, 1-52, Wiley-VCH, Weinheim (2008)

  14. Jeong, B., Cho, H., Yu, M.-F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Modeling and measurement of geometrically nonlinear damping in a microcantilever-nanotube system. ACS Nano 7, 8547–8553 (2013)

    Article  Google Scholar 

  15. Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys. 9, 215–220 (1973)

    Article  Google Scholar 

  16. Lindenberg, K., Seshadri, V.: Dissipative contributions of internal multiplicative noise: I. Mechanical oscillator. Phys. A 109, 483–499 (1981)

    Article  MathSciNet  Google Scholar 

  17. Croy, A., Midtvedt, D., Isacsson, A., Kinaret, J.M.: Nonlinear damping in graphene resonators. Phys. Rev. B 86, 235435 (2012)

    Article  Google Scholar 

  18. De, S., Kunal, K., Aluru, N.R.: Nonlinear intrinsic dissipation in single layer \(\text{ MoS }_{2}\) resonators. RSC Adv 7, 6403–6410 (2017)

    Article  Google Scholar 

  19. Atalaya, J., Kenny, T.W., Roukes, M.L., Dykman, M.I.: Nonlinear damping and dephasing in nanomechanical systems. Phys. Rev. B 94, 195440 (2016)

    Article  Google Scholar 

  20. Elliot, S.J., Ghandchi Tehrani, M., Langley, R.S.: Nonlinear damping and quasi-linear modelling. Phil. Trans. R. Soc. A 373, 20140402 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Singh, V., Shevchuk, O., Blanter, Y.M., Steele, G.A.: Negative nonlinear damping of a multilayer graphene mechanical resonator. Phys. Rev. B 93, 245407 (2016)

    Article  Google Scholar 

  22. Guttinger, J., Noury, A., Weber, P., Eriksson, A.M., Lagoin, C., Moser, J., Eichler, C., Wallraff, A., Isacsson, A., Bachtold, A.: Energy-dependent path of dissipation in nanomechanical resonators. Nat. Nanotechnol. 12, 631–636 (2017)

    Article  Google Scholar 

  23. Chen, C., Zanette, D.H., Czaplewski, D.A., Shaw, S., Lopez, D.: Direct observation of coherent energy transfer in nonlinear micromechanical oscillators. Nat. Commun. 8, 15523 (2017)

    Article  Google Scholar 

  24. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  25. Fung, Y.C.: Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, NJ (1965)

    Google Scholar 

  26. Christensen, R.M.: Theory of Viscoelasticity: An Introduction, 2nd edn. Dover, Mineola, NY (1982)

    Google Scholar 

  27. Lakes, R.: Viscoelastic Materials. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  28. Milkus, R., Zaccone, A.: Atomic scale origin of dynamic viscoelastic response and creep in disordered solids. Phys. Rev. E 95, 023001 (2017)

    Article  Google Scholar 

  29. Amabili, M.: Nonlinear damping in large-amplitude vibrations: modelling and experiments. Nonlinear Dyn (2018) in press. https://doi.org/10.1007/s11071-017-3889-z

  30. Amabili, M.: Reduced-order models for nonlinear vibrations, based on natural modes: the case of the circular cylindrical shell. Phil. Trans. R. Soc. A 371, 20120474 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Balasubramanian, P., Ferrari, G., Amabili, M.: Identification of the viscoelastic response and nonlinear damping of a rubber plate in nonlinear vibration regime. Mech. Syst. Signal Process. 111, 376–398 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the NSERC Discovery Grant and Canada Research Chair program. F. Alijani, G. Ferrari, S. Carra, and C. Augenti helped with experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Amabili.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest concerning the publication of this manuscript.

Appendix A: Equation of motion for fractional damping

Appendix A: Equation of motion for fractional damping

The standard linear solid viscoelastic material model in Eq. (1) can be modified by replacing the ordinary derivative with the fractional derivative of order \(\alpha \), with \(0<\alpha \le 1\), as done in [29]. This, mechanically speaking, corresponds to replacing the viscous dashpot with a spring-pot. In reference [29], the differential equation of motion in a form analogous to equation (31) was not derived. Therefore, it is reported here in order to complete the work presented in [29]

$$\begin{aligned}&\ddot{x}(t)+\frac{2\zeta \omega _n^{2-\alpha } /\sin (\alpha \pi /2)}{1+\left( {2\zeta /\sin (\alpha \pi /2)} \right) ^{2}\left( {\omega /\omega _n } \right) ^{2\alpha }+4\zeta \cot (\alpha \pi /2)\left( {\omega /\omega _n } \right) ^{\alpha }} \nonumber \\&\quad \left[ {D_t^\alpha x(t)+2\frac{\tilde{\beta }_2 }{h}x(t)D_t^\alpha x(t)+3\frac{\tilde{\beta }_3 }{h^{2}}x^{2}(t)D_t^\alpha x(t)} \right] +\,\omega _n^2 \left[ {x(t)+\frac{\beta _2 }{h}x^{2}(t)+\frac{\beta _3 }{h^{2}}x^{3}(t)} \right] \nonumber \\&\quad +\,\frac{4\zeta ^{2}\omega ^{2\alpha }\omega _n^{2-2\alpha } /\sin (\alpha \pi /2)}{1+\left( {2\zeta /\sin (\alpha \pi /2)} \right) ^{2}\left( {\omega /\omega _n } \right) ^{2\alpha }+4\zeta \cot (\alpha \pi /2)\left( {\omega /\omega _n } \right) ^{\alpha }} \nonumber \\&\quad \times \, \left[ {\left( {x(t)-\hbox {avg}(x)} \right) +\frac{\tilde{\beta }_2 }{h}\left( {x^{2}(t)-\hbox {avg}(x^{2})} \right) +\frac{\tilde{\beta }_3 }{h^{2}}\left( {x^{3}(t)-\hbox {avg}(x^{3})} \right) } \right] =\frac{\tilde{f} }{m}\sin (\omega t),\qquad \qquad \qquad \qquad \qquad \qquad \end{aligned}$$
(A1)

where the symbol avg indicates the average of the function in a period and

$$\begin{aligned} \tau _r = \frac{1}{\omega _n }\left[ {\frac{2 \zeta }{\sin (\alpha \pi /2)}} \right] ^{1/\alpha }. \end{aligned}$$
(A2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amabili, M. Derivation of nonlinear damping from viscoelasticity in case of nonlinear vibrations. Nonlinear Dyn 97, 1785–1797 (2019). https://doi.org/10.1007/s11071-018-4312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4312-0

Keywords

Navigation