Skip to main content
Log in

The simple chaotic model of passive dynamic walking

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recent findings on the dynamical analysis of human locomotion characteristics such as stride length signal have shown that this process is intrinsically a chaotic behavior. The passive walking has been defined as walking down a shallow slope without using any muscular contraction as an active controller. Based on this definition, some knee-less models have been proposed to present the simplest possible models of human gait. To maintain stability, these simple passive models are compelled to show a wide range of different dynamics from order to chaos. Unfortunately, based on simplifications, for many years the cyclic period-one behavior of these models has been considered as the only stable response. This assumption is not in line with the findings about the nature of walking. Thus, this paper proposes a novel model to demonstrate that the knee-less passive dynamic models also have the ability to model the chaotic behavior of human locomotion with some modifications. The presented novel model can show chaotic behavior as a stable and acceptable answer using a chaotic function in heel-strike condition. The represented chaotic model is also able to simulate different types of motor deficits such as Parkinson’s disease only by manipulating the value of chaotic parameter. Our model has extensively examined in complexity and chaotic behavior using different analytical methods such as fractal dimension, bifurcation and largest Lyapunov exponent, and it was compared with conventional passive models and the stride signal of healthy subjects and Parkinson patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

This figure is reformed from [44, 45]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Elftman, H.: Studies of gait. J. Bone. Jt. Surg. Am. 48, 363–377 (1966)

    Article  Google Scholar 

  2. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  3. Iqbal, S., et al.: Bifurcations and chaos in passive dynamic walking: a review. Robot. Auton. Syst. 62(6), 889–909 (2014)

    Article  Google Scholar 

  4. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Physics-based modeling and simulation of human walking: a review of optimization-based and other approaches. Struct. Multidiscip. Optim. 42(1), 1–23 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Craik, R.L.: Gait Analysis: Theory and Application, pp. 143–158 (1995)

  6. Fish, D.J., Nielsen, J.-P.: Clinical assessment of human gait. J. Prosthet. Orthot. 5(2), 39 (1993)

    Article  Google Scholar 

  7. Galley, P., Forster, A.: Human Movement: An Introductory Text for Physiotherapy Students. Churchill Livingstone, London (1987)

    Google Scholar 

  8. Kuo, A.D., Donelan, J.M.: Dynamic principles of gait and their clinical implications. Phys. Ther. 90(2), 15 (2010)

    Article  Google Scholar 

  9. Ferris, D.P., Sawicki, G.S., Daley, M.A.: A physiologist’s perspective on robotic exoskeletons for human locomotion. Int. J. Humanoid Robot. 4(03), 507–528 (2007)

    Article  Google Scholar 

  10. Hase, K., et al.: Human gait simulation with a neuromusculoskeletal model and evolutionary computation. J. Vis. Comput. Animat. 14(2), 73–92 (2003)

    Article  Google Scholar 

  11. Whittle, M.W.: Gait Analysis: An Introduction. Butterworth-Heinemann, London (2014)

    Google Scholar 

  12. Doyle, T.L., et al.: Discriminating between elderly and young using a fractal dimension analysis of centre of pressure. Int. J. Med. Sci. 1(1), 11–20 (2004)

    Article  Google Scholar 

  13. Kay, B.A.: The dimensionality of movement trajectories and the degrees of freedom problem: a tutorial. Hum. Mov. Sci. 7(2), 343–364 (1988)

    Article  Google Scholar 

  14. Kelso, J., et al.: Phase-locked modes, phase transitions and component oscillators in biological motion. Phys. Scr. 35(1), 79 (1987)

    Article  Google Scholar 

  15. Buzzi, U.H., et al.: Nonlinear dynamics indicates aging affects variability during gait. Clin. Biomech. 18(5), 435–443 (2003)

    Article  MathSciNet  Google Scholar 

  16. Yamada, N.: Chaotic swaying of the upright posture. Hum. Mov. Sci. 14(6), 711–726 (1995)

    Article  Google Scholar 

  17. Yamada, N.: Nature of variability in rhythmical movement. Hum. Mov. Sci. 14(3), 371–384 (1995)

    Article  Google Scholar 

  18. Blin, O., Ferrandez, A.-M., Serratrice, G.: Quantitative analysis of gait in Parkinson patients: increased variability of stride length. J. Neurol. Sci. 98(1), 91–97 (1990)

    Article  Google Scholar 

  19. Factor, S.A., Weiner, W.: Parkinson’s Disease: Diagnosis & Clinical Management. Demos Medical Publishing, New York (2007)

    Google Scholar 

  20. Morris, M.E., et al.: Stride length regulation in Parkinson’s disease. Brain 119(2), 551–568 (1996)

    Article  Google Scholar 

  21. Shumway-Cook, A., Woollacott, M.H.: Motor Control: Translating Research into Clinical Practice. Lippincott Williams & Wilkins, Philadelphia (2007)

    Google Scholar 

  22. Kellert, S.H.: In the Wake of Chaos: Unpredictable Order in Dynamical Systems. University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

  23. Nijmeijer, H., Schumacher, J.: Four decades of mathematical system theory. In: Polderman, J.W., Trentelman, H.L. (eds.) The Mathematics of Systems and Control: From Intelligent Control to Behavioral Systems, pp. 73–83. University of Groningen Press, Groningen (1999)

    Google Scholar 

  24. Walleczek, J.: Self-Organized Biological Dynamics and Nonlinear Control: Toward Understanding Complexity, Chaos and Emergent Function in Living Systems. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  25. Fradkov, A.L., Evans, R.J.: Control of chaos: methods and applications in engineering. Annu. Rev. Control 29(1), 33–56 (2005)

    Article  Google Scholar 

  26. Hilborn, R.C.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press, New York (2000)

    Book  MATH  Google Scholar 

  27. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9(1–2), 189–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hausdorff, J.M., et al.: Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J. Appl. Physiol. 78(1), 349–358 (1995)

    Article  Google Scholar 

  29. Hausdorff, J.M., et al.: Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J. Appl. Physiol. 80(5), 1448–1457 (1996)

    Article  Google Scholar 

  30. Harbourne, R.T., Stergiou, N.: Movement variability and the use of nonlinear tools: principles to guide physical therapist practice. Phys. Ther. 89(3), 267 (2009)

    Article  Google Scholar 

  31. Shim, Y., Husbands, P.: Chaotic exploration and learning of locomotion behaviors. Neural Comput. 24(8), 2185–2222 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Collins, S.H.: Dynamic Walking Principles Applied to Human Gait. ProQuest, Ann Arbor (2008)

    Google Scholar 

  33. Hirata, K., Kokame, H.: Stability analysis of linear systems with state jump-motivated by periodic motion control of passive walker. In: IEEE Conference on Proceedings of Control Applications, CCA 2003 (2003)

  34. Suzuki, S., Furuta, K.: Enhancement of stabilization for passive walking by chaos control approach. IFAC Proc. Vol. 35(1), 133–138 (2002)

    Article  Google Scholar 

  35. Katoh, R., Mori, M.: Control method of biped locomotion giving asymptotic stability of trajectory. Automatica 20(4), 405–414 (1984)

    Article  MATH  Google Scholar 

  36. Gritli, H., Khraief, N., Belghith, S.: Chaos control in passive walking dynamics of a compass-gait model. Commun. Nonlinear Sci. Numer. Simul. 18(8), 2048–2065 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mitra, S., Riley, M.A., Turvey, M.T.: Chaos in human rhythmic movement. J. Mot. Behav. 29(3), 195–198 (1997)

    Article  Google Scholar 

  38. Gritli, H., Belghith, S., Khraief, N.: Cyclic-fold bifurcation and boundary crisis in dynamic walking of biped robots. Int. J. Bifurc. Chaos 22(10), 1250257 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gritli, H., Belghith, S.: Bifurcations and chaos in the semi-passive bipedal dynamic walking model under a modified OGY-based control approach. Nonlinear Dyn. 83(4), 1955–1973 (2016)

    Article  MathSciNet  Google Scholar 

  40. Gritli, H., Belghith, S., Khraief, N.: OGY-based control of chaos in semi-passive dynamic walking of a torso-driven biped robot. Nonlinear Dyn. 79(2), 1363–1384 (2015)

    Article  MATH  Google Scholar 

  41. Gritli, H., Belghith, S.: Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: analysis of local bifurcations via the hybrid Poincaré map. Chaos Solitons Fractals 98, 72–87 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gritli, H., Belghith, S.: Walking dynamics of the passive compass-gait model under OGY-based control: emergence of bifurcations and chaos. Commun. Nonlinear Sci. Numer. Simul. 47, 308–327 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gritli, H., Belghith, S.: Computation of the Lyapunov exponents in the compass-gait model under OGY control via a hybrid Poincaré map. Chaos Solitons Fractals 81, 172–183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Garcia, M., et al.: The simplest walking model: stability, complexity, and scaling. J. Biomech. Eng. Trans. ASME 120(2), 281–288 (1998)

    Article  Google Scholar 

  45. Garcia, M., Chatterjee, A., Ruina, A.: Efficiency, speed, and scaling of two-dimensional passive-dynamic walking. Dyn. Stab. Syst. 15(2), 75–99 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Goswami, A., Thuilot, B., Espiau, B.: Compass-like biped robot part I: stability and bifurcation of passive gaits. INRIA (1996)

  47. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    Article  Google Scholar 

  48. McGeer, T.: Passive walking with knees. In: IEEE International Conference on Robotics and Automation, Proceedings. IEEE (1990)

  49. McGeer, T.: Principles of walking and running. Adv. Comp. Environ. Physiol. 11, 113–139 (1992)

    Article  Google Scholar 

  50. Gritli, H., Khraeif, N., Belghith, V.: Falling of a passive compass-gait biped robot caused by a boundary crisis. In: Proceedings of the 4th Chaotic Modeling and Simulation International Conference, Crete, Greece (2011)

  51. Kinsella-Shaw, J.M., Shaw, B., Turvey, M.T.: Perceiving ’walk-on-able’ slopes. Ecol. Psychol. 4(4), 223–239 (1992)

    Article  Google Scholar 

  52. Gritli, H., Belghith, S., Khraeif, N.: Intermittency and interior crisis as route to chaos in dynamic walking of two biped robots. Int. J. Bifurc. Chaos 22(03), 1250056 (2012)

    Article  MATH  Google Scholar 

  53. Goswami, A., Espiau, B., Keramane, A.: Limit cycles and their stability in a passive bipedal gait. In: 1996 IEEE International Conference on Robotics and Automation. Proceedings. IEEE (1996)

  54. Goswami, A., Espiau, B., Keramane, A.: Limit cycles in a passive compass gait biped and passivity-mimicking control laws. Auton. Robots 4(3), 273–286 (1997)

    Article  Google Scholar 

  55. Goswami, A., Thuilot, B., Espiau, B.: A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int. J. Robot. Res. 17(12), 1282–1301 (1998)

    Article  Google Scholar 

  56. McGeer, T.: Passive dynamic biped catalogue, 1991. In: Experimental Robotics II. Springer, Berlin, pp. 463–490 (1993)

  57. Sabaapour, M.R., Hairi Yazdi, M., Beigzadeh, B.: Passive dynamic turning in 3D biped locomotion: an extension to passive dynamic walking. Adv. Robot. 30(3), 218–231 (2016)

    Article  Google Scholar 

  58. Safa, A.T., Naraghi, M.: The role of walking surface in enhancing the stability of the simplest passive dynamic biped. Robotica 33(1), 195 (2015)

    Article  Google Scholar 

  59. Spong, M.W.: The passivity paradigm in the control of bipedal robots. In: Climbing and Walking Robots, pp. 775–786. Springer (2005)

  60. Spong, M.W., Holm, J.K., Lee, D.: Passivity-based control of bipedal locomotion. IEEE Robot. Autom. Mag. 14(2), 30–40 (2007)

    Article  Google Scholar 

  61. Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65(3), 147–159 (1991)

    Article  MATH  Google Scholar 

  62. Spong, M.W., Bullo, F.: Controlled symmetries and passive walking. IEEE Trans. Autom. Control 50(7), 1025–1031 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  63. Iida, F., Tedrake, R.: Minimalistic control of a compass gait robot in rough terrain. In: IEEE International Conference on Robotics and Automation. ICRA’09 (2009)

  64. Gritli, H., Belghith, S.: Displayed phenomena in the semi-passive torso-driven biped model under OGY-based control method: birth of a torus bifurcation. Appl. Math. Model. 40(4), 2946–2967 (2016)

    Article  MathSciNet  Google Scholar 

  65. Alexander, R.: Simple models of human movement. Appl. Mech. Rev. 48(8), 461–469 (1995)

    Article  Google Scholar 

  66. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459–467 (1976)

    Article  MATH  Google Scholar 

  67. Baumol, W.J., Benhabib, J.: Chaos: significance, mechanism, and economic applications. J. Econ. Perspect. 3(1), 77–105 (1989)

    Article  Google Scholar 

  68. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  69. Ni, X., Chen, W., Liu, J.: The effects of parameters on the stability of passive dynamic walking. In: 3rd International Conference on. 2009 Bioinformatics and Biomedical Engineering. ICBBE 2009. IEEE (2009)

  70. Dingwell, J.B., John, J., Cusumano, J.P.: Do humans optimally exploit redundancy to control step variability in walking? PLoS Comput. Biol. 6(7), e1000856 (2010)

    Article  MathSciNet  Google Scholar 

  71. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MATH  Google Scholar 

  72. Sarbaz, Y., et al.: Gait spectral analysis: an easy fast quantitative method for diagnosing Parkinson’s disease. J. Mech. Med. Biol. 12(03), 1250041 (2012)

    Article  Google Scholar 

  73. Giladi, N., Nieuwboer, A.: Understanding and treating freezing of gait in parkinsonism, proposed working definition, and setting the stage. Mov. Disord. 23(S2), S423–S425 (2008)

    Article  Google Scholar 

  74. Yogev, G., et al.: Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? Eur. J. Neurosci. 22(5), 1248–1256 (2005)

    Article  Google Scholar 

  75. Bond, J.M., Morris, M.: Goal-directed secondary motor tasks: their effects on gait in subjects with Parkinson disease. Arch. Phys. Med. Rehabil. 81(1), 110–116 (2000)

    Article  Google Scholar 

  76. Camicioli, R., et al.: Verbal fluency task affects gait in Parkinson’s disease with motor freezing. J. Geriatr. Psychiatry Neurol. 11(4), 181–185 (1998)

    Article  Google Scholar 

  77. Theiler, J.: Estimating fractal dimension. JOSA A 7(6), 1055–1073 (1990)

    Article  MathSciNet  Google Scholar 

  78. Hans, S.: Space-Filling Curves. Springer, Berlin (2012)

    Google Scholar 

  79. Accardo, A., et al.: Use of the fractal dimension for the analysis of electroencephalographic time series. Biol. Cybern. 77(5), 339–350 (1997)

    Article  MATH  Google Scholar 

  80. Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Physica D 31(2), 277–283 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  81. Acharya, R., et al.: Analysis of cardiac health using fractal dimension and wavelet transformation. ITBM-RBM 26(2), 133–139 (2005)

    Article  Google Scholar 

  82. Manabe, Y., et al.: Fractal dimension analysis of static stabilometry in Parkinson’s disease and spinocerebellar ataxia. Neurol. Res. 23(4), 397–404 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Jafari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montazeri Moghadam, S., Sadeghi Talarposhti, M., Niaty, A. et al. The simple chaotic model of passive dynamic walking. Nonlinear Dyn 93, 1183–1199 (2018). https://doi.org/10.1007/s11071-018-4252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4252-8

Keywords

Navigation