Skip to main content
Log in

Effects of friction and stochastic load on transient characteristics of a spur gear pair

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The existence of randomness in external load of geared systems is widely known. Stochastic load induces more vibration and noise than deterministic load. In this paper, a nonlinear dynamic model is developed considering time-varying mesh stiffness, backlash, sliding friction, and stochastic external load. Friction is first introduced in a spur gear pair nonlinear dynamic model under stochastic load. Monte Carlo simulation is applied to analyze the transient characteristics focusing on the effects caused by stochastic load and friction. The results show that stochastic load makes the system stay in the transient state for a longer duration and lower transient stability comparing with the results under deterministic load. In addition, the system’s transient stability and responses’ dispersion vary with the increase in friction coefficient. The friction coefficients that will cause the lowest transient stability and highest dispersion of relative angular displacement are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liang, X., Zuo, M.J., Feng, Z.: Dynamic modeling of gearbox faults: a review. Mech. Syst. Signal Process. 98, 852–876 (2017)

    Article  Google Scholar 

  2. Shao, Y., Chen, Z.: Dynamic features of planetary gear set with tooth plastic inclination deformation due to tooth root crack. Nonlinear Dyn. 74(4), 1253–1266 (2013)

    Article  Google Scholar 

  3. Yang, D.C.H., Sun, Z.S.: A rotary model for spur gear dynamics. J. Mech. Transm. Autom. Des. 107(4), 529–535 (1985)

    Article  Google Scholar 

  4. Tian, X.: Dynamic simulation for system response of gearbox including localized gear faults. A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science, Department of Mechanical Engineering, University of Alberta (2004)

  5. Liang, X., Zuo, M.J., Patel, T.H.: Evaluating the time-varying mesh stiffness of a planetary gear set using the potential energy method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228(3), 535–547 (2014)

    Article  Google Scholar 

  6. Lee, D.H., Moon, K.H., Lee, W.Y.: Characteristics of transmission error and vibration of broken tooth contact. J. Mech. Sci. Technol. 30(12), 5547–5553 (2016)

    Article  Google Scholar 

  7. Feki, M.S., Chaari, F., Abbes, M.S., Viadero, F., Rincon, A.F.D., Haddar, M.: Dynamic analysis of planetary gear transmission under time varying loading conditions. In: Viadero, F., Cecarelli, M. (eds.) New Trends in Mechanism and Machine Science, pp. 311–318. Springer, Dordrecht (2013)

    Chapter  Google Scholar 

  8. Wang, J., Li, R., Peng, X.: Survey of nonlinear vibration of gear transmission systems. Appl. Mech. Rev. 56(3), 309–329 (2003)

    Article  Google Scholar 

  9. Khabou, M.T., Bouchaala, N., Chaari, F., Fakhfakh, T., Haddar, M.: Study of a spur gear dynamic behavior in transient regime. Mech. Syst. Signal Process. 25(8), 3089–3101 (2011)

    Article  Google Scholar 

  10. Utagawa, M., Harada, T.: Dynamic loads on spur gear teeth having pitch errors at high speed. Bull. JSME 5(18), 374–381 (1962)

    Article  Google Scholar 

  11. Tobe, T., Sato, K.: Statistical analysis of dynamic loads on spur gear teeth. Bull. JSME 20(145), 882–889 (1977)

    Article  Google Scholar 

  12. Tobe, T., Sato, K., Takatsu, N.: Statistical analysis of dynamic loads on spur gear teeth : experimental Study. Bull. JSME 20(148), 1315–1320 (1977)

    Article  Google Scholar 

  13. Wang, L., Shen, T., Chen, C., Chen, H.: Dynamic reliability analysis of gear transmission system of wind turbine in consideration of randomness of loadings and parameters. Math. Probl. Eng. 2014, 1–10 (2014)

    Google Scholar 

  14. Patil, A., Thosar, A.: Steady state and transient stability analysis of wind energy system. In: 2016 2nd international conference on control, instrumentation, energy & communication (CIEC), pp. 250–254. IEEE (2016)

  15. Drago, R.: The effect of start-up load conditions on gearbox performance and life failure analysis, with supporting case study. In: American gear manufacturers association fall technical meeting (2009)

  16. Wang, Y., Zhang, W.J.: Stochastic vibration model of gear transmission systems considering speed-dependent random errors. Nonlinear Dyn. 17(2), 187–203 (1998)

    Article  MATH  Google Scholar 

  17. Theodossiades, S., Natsiavas, S.: Non-linear dynamics of gear-pair system with periodic stiffness and backlash. J. Sound Vib. 229(2), 287–310 (2000)

    Article  Google Scholar 

  18. Yang, J.: Vibration analysis on multi-mesh gear-trains under combined deterministic and random excitations. Mech. Mach. Theory 59, 20–33 (2013)

    Article  Google Scholar 

  19. Wen, Y., Yang, J., Wang, S.: Random dynamics of a nonlinear spur gear pair in probabilistic domain. J. Sound Vib. 333(20), 5030–5041 (2014)

    Article  Google Scholar 

  20. Liu, F., Jiang, H., Liu, S., Yu, X.: Dynamic behavior analysis of spur gears with constant and variable excitations considering sliding friction influence. J. Mech. Sci. Technol. 30(12), 5363–5370 (2016)

    Article  Google Scholar 

  21. Martin, K.F.: A review of friction predictions in gear teeth. Wear 49(2), 201–238 (1978)

    Article  Google Scholar 

  22. Yang, D.C.H., Lin, J.Y.: Hertzian damping, tooth friction and bending elasticity in gear impact dynamics. J. Mech. Transm. Autom. Des. 109(2), 189–196 (1987)

    Article  Google Scholar 

  23. He, S., Gunda, R., Singh, R.: Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness. J. Sound Vib. 301(3), 927–949 (2007)

    Article  Google Scholar 

  24. Krupka, I., Hartl, M., Svoboda, P.: Effect of surface topography on mixed lubrication film under transient conditions. In: ASME/STLE 2009 international joint tribology conference, pp. 481–482. American Society of Mechanical Engineers (2009)

  25. He, S., Cho, S., Singh, R.: Prediction of dynamic friction forces in spur gears using alternate sliding friction formulations. J. Sound Vib. 309, 843–851 (2008)

    Article  Google Scholar 

  26. Fang, Y., Liang, X., Zuo, M.: Effect of sliding friction on transient characteristics of a gear transmission under random loading. In: 2017 IEEE international conference on systems, man, and cybernetics, p. 5 (2017)

  27. Itô, K.: Essentials of Stochastic Processes. Translations of Mathematical Monographs, Vol. 231. American Mathematical Society, Providence (2006)

    Google Scholar 

  28. Liu, B., Xu, J., Zhao, X.: Parameter estimation for load-sharing systems with degrading components. In: 2016 IEEE international conference on industrial engineering and engineering management (IEEM), pp. 1310–1314. IEEE (2016)

  29. Benedict, G.H., Kelley, B.W.: Instantaneous coefficients of gear tooth friction. Trans. ASLE 4(1), 59–70 (1961)

    Article  Google Scholar 

  30. Huang, T., Dai, L., Zhang, H.: An approach combining periodicity ratio and secondary Poincaré map for characteristics diagnosis of nonlinear oscillatory systems. Nonlinear Dyn. 84(2), 959–975 (2015)

    Article  Google Scholar 

  31. Fang, T., Dowell, E.H.: Numerical simulations of periodic and chaotic responses in a stable Duffing system. Int. J. Non Linear Mech. 22(5), 401–425 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Holmes, P., Shea-Brown, E.T.: Stability. Scholarpedia 1(10), 1838 (2006)

    Article  Google Scholar 

  33. Durrett, R.: Probability: Theory and Examples. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  34. Sun, J.Q., Hsu, C.S.: The generalized cell mapping method in nonlinear random vibration based upon short-time Gaussian approximation. J. Appl. Mech. 57(4), 1018–1025 (1990)

    Article  MathSciNet  Google Scholar 

  35. Hsu, C.S.: Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems. Springer, Berlin (2013)

    Google Scholar 

  36. Naess, A., Moe, V.: Efficient path integration methods for nonlinear dynamic systems. Probab. Eng. Mech. 15(2), 221–231 (2000)

    Article  Google Scholar 

  37. Naess, A., Kolnes, F.E., Mo, E.: Stochastic spur gear dynamics by numerical path integration. J. Sound Vib. 302, 936–950 (2007)

    Article  MATH  Google Scholar 

  38. Hu, P., Lu, J.C., Zhang, Y.M.: Analysis of dynamic response and sensitivity of gear systems based on stochastic perturbation theory. Dongbei Daxue Xuebao J. Northeast. Univ. 35(2), 257–262 (2014)

    Google Scholar 

  39. Guerine, A., El Hami, A., Walha, L., Fakhfakh, T., Haddar, M.: A perturbation approach for the dynamic analysis of one stage gear system with uncertain nnparameters. Mech. Mach. Theory 92, 113–126 (2015)

    Article  Google Scholar 

  40. Simoen, E., De Roeck, G., Lombaert, G.: Dealing with uncertainty in model updating for damage assessment: a review. Mech. Syst. Signal Process. 56, 123–149 (2015)

    Article  Google Scholar 

  41. Zhou, D., Zhang, X., Zhang, Y.: Dynamic reliability analysis for planetary gear system in shearer mechanisms. Mech. Mach. Theory 105, 244–259 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Natural Sciences and Engineering Research Council of Canada (Grant \(\# \)No. RGPIN-2015-04897) and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming J. Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Liang, X. & Zuo, M.J. Effects of friction and stochastic load on transient characteristics of a spur gear pair. Nonlinear Dyn 93, 599–609 (2018). https://doi.org/10.1007/s11071-018-4212-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4212-3

Keywords

Navigation