Skip to main content
Log in

An approach combining periodicity ratio and secondary Poincaré map for characteristics diagnosis of nonlinear oscillatory systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A secondary Poincaré map approach is developed in this research for diagnosing the nonlinear characteristics such as quasiperiodic and chaotic responses of a dynamic system. With the secondary Poincaré map approach developed, an approach combining the periodicity ratio method and the secondary Poincaré map approach is established such that all the dynamical characteristics of a nonlinear dynamic system can be systemically and completely identified. An example of an ecological oscillatory system is presented in the research to demonstrate the application of the combined approach. Periodic–quasiperiodic–chaotic region diagrams are generated with the employment of the approach, for a global characterization of this system with consideration of large ranges of system parameters. The approach developed in this research demonstrates effectiveness and efficiency in completely diagnosing the complex dynamical characteristics of nonlinear oscillatory systems, such as periodic, quasiperiodic, chaotic responses of the systems together with those in between periodic and chaotic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lee, W.K., Park, H.D.: Chaotic dynamics of a harmonically excited spring-pendulum system with internal resonance. Nonlinear Dyn. 14, 211–229 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fang, T., Dowell, E.H.: Numerical simulations of periodic and chaotic responses in a stable duffing system. Int. J. Non-Linear Mech. 22, 401–425 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jing, Z., Wang, R.: Complex dynamics in Duffing system with two external forcings. Chaos Solitons Fractals 23, 399–411 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Trejo-Guerra, R., Tlelo-Cuautle, E., Jiménez-Fuentes, J.M., Sánchez-López, C., Muñoz-Pacheco, J.M., Espinosa-Flores-Verdad, G., Rocha-Pérez, J.M.: Integrated circuit generating 3- and 5-scroll attractors. Commun. Nonlinear Sci. Numer. Simul. 17, 4328–4335 (2012)

    Article  MathSciNet  Google Scholar 

  5. Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena, A.D., Obeso-Rodelo, P.J., Nuñez-Perez, J.C.: FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27, 66–80 (2015)

    Article  MathSciNet  Google Scholar 

  6. Rinaldi, S., Muratori, S.: Conditioned chaos in seasonally perturbed predator-prey models. Ecol. Model. 69, 79–97 (1993)

    Article  Google Scholar 

  7. Gakkhar, S., Naji, R.K.: Chaos in seasonally perturbed ratio-dependent prey-predator system. Chaos Solitons Fractals 15, 107–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rinaldi, S., Muratori, S., Kuznetsov, Y.: Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities. Bull. Math. Biol. 55, 15–35 (1993)

    Article  MATH  Google Scholar 

  9. Strogatz, S.H.: Nonlinear Dynamics and Chaos-With Applications to Physics, Biology, Chemistry and Engineering, 1st edn. Addison-Wesley, Boston (1994)

    Google Scholar 

  10. Dai, L., Wang, G.: Implementation of periodicity-ratio in analyzing nonlinear dynamic systems: a comparison with Lyapunov-exponent. J. Comput. Nonlinear Dyn. 3, 011006.1–011006.9 (2008)

    Article  Google Scholar 

  11. Hastings, A., Powell, T.: Chaos in a three-species food chain. Ecology 72, 896–903 (1991)

    Article  Google Scholar 

  12. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley Interscience, New York (1995)

    Book  MATH  Google Scholar 

  13. Dai, L.: Nonlinear Dynamics of Piecewise Constant Systems and Implementation of Piecewise Constant Arguments. World Scientific Publishing Co., New Jersey (2008)

    Book  MATH  Google Scholar 

  14. Parker, T.S., Chua, L.O.: Chaos: a tutorial for engineers. Proc. IEEE 75, 982–1008 (1987)

    Article  Google Scholar 

  15. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, C.J., Zhu, W.D., Ren, G.X.: Approximate and efficient calculation of dominant Lyapunov exponents of high-dimensional nonlinear dynamic systems. Commun. Nonlinear Sci. Numer. Simul. 18, 3271–3277 (2013)

    Article  MathSciNet  Google Scholar 

  18. Carbajal-Gómez, V.H., Tlelo-Cuautle, E., Fernández, F.V.: Optimizing the positive Lyapunov exponent in multi-scroll chaotic oscillators with differential evolution algorithm. Appl. Math. Comput. 219, 8163–8168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chlouverakis, K.E., Sprott, J.C.: A comparison of correlation and Lyapunov dimensions. Phys. D Nonlinear Phenom. 200, 156–164 (2005)

    Article  MATH  Google Scholar 

  20. Leonov, G.A.: Lyapunov functions in the attractors dimension theory. J. Appl. Math. Mech. 76, 129–141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bonakdar, M., Samadi, M., Salarieh, H., Alasty, A.: Stabilizing periodic orbits of chaotic systems using fuzzy control of Poincaré map. Chaos Solitons Fractals 36, 682–693 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mukherjee, S., Palit, S.K., Bhattacharya, D.K.: Is one dimensional Poincaré map sufficient to describe the chaotic dynamics of a three dimensional system? Appl. Math. Comput. 219, 11056–11064 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tucker, W.: Computing accurate Poincaré maps. Phys. D 171, 127–137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dai, L., Singh, M.C.: Diagnosis of periodic and chaotic responses in vibratory systems. J. Acoust. Soc. Am. 102, 3361–3371 (1997)

    Article  Google Scholar 

  25. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  26. Olga, I., Moskalenkoa, O., Koronovskii, A., Hramova, A., Zhuravleva, M., Levina, Y.: Cooperation of deterministic and stochastic mechanisms resulting in the intermittent behavior. Chaos Solitons Fractals 68, 58–64 (2014)

    Article  MathSciNet  Google Scholar 

  27. Miller, R.K.: Almost periodic behavior of solutions of a nonlinear Volterra system. Brown UNIV Providence RI DIV of Applied Mathematics (1969)

  28. Xia, Y., Cao, J.: Almost periodicity in an ecological model with M-predators and N-preys by pure-delay type system. Nonlinear Dyn. 39, 275–304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Abbas, S., Sen, M., Banerjee, M.: Almost periodic solution of a non-autonomous model of phytoplankton allelopathy. Nonlinear Dyn. 67, 203–214 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kaas-Petersen, C.: Computation of quasi-periodic solutions of forced dissipative systems. J. Comput. Phys. 58, 395–408 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kaas-Petersen, C.: Computation, continuation, and bifurcation of torus solutions for dissipative maps and ordinary differential equations. Phys. D Nonlinear Phenom. 25, 288–306 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ueda, Y.: Steady motions exhibited by Duffing’s equation: a picture book of regular and chaotic motions. Presented at the Engineering Foundation Conference on New Approaches to Nonlinear Problems in Dynamics, Monterey, CA, 9–14 Dec. 1979, vol 1, 9–14 (1980)

  33. Khammari, H., Mira, C., Carcassés, J.P.: Behavior of harmonics generated by a duffing type equation with a nonlinear damping: part I. Int. J. Bifurc. Chaos 15(10), 3181–3221 (2005)

    Article  MATH  Google Scholar 

  34. Dai, L., Han, L.: Analysing periodicity, nonlinearity and transitional characteristics of nonlinear dynamic systems with Periodicity Ratio (PR). Commun. Nonlinear Sci. Numer. Simul. 16, 4731–4744 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Moon, F.C.: Chaotic and Fractal Dynamics: Introduction for Applied Scientists and Engineers. Wiley, New York (2008)

    Google Scholar 

  36. Scheffer, M., Rinaldi, S., Kuznetsov, Y.A., van Nes, E.H.: Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system. Oikos 80, 519–532 (1997)

    Article  Google Scholar 

  37. Edwards, A.M., Brindley, J.: Oscillatory behavior in a three-component plankton population model. Dyn. Stab. Syst. 11, 389–413 (1996)

    Article  MATH  Google Scholar 

  38. Gao, M., Shi, H., Li, Z.: Chaos in a seasonally and periodically forced phytoplankton–zooplankton system. Nonlinear Anal. Real World Appl. 10, 1643–1650 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Truscott, J.E., Brindley, J.: Ocean plankton populations as excitable media. Bull. Math. Biol. 56, 981–998 (1994)

    Article  MATH  Google Scholar 

  40. Duan, L., Huang, L., Guo, Z.: Stability and almost periodicity for delayed high-order Hopfield neural networks with discontinuous activations. Nonlinear Dyn. 77, 1469–1484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xia, Y., Cao, J., Zhang, H., Chen, F.: Almost periodic solutions of \(n\)-species competitive system with feedback controls. J. Math. Anal. Appl. 294, 503–522 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xia, Y., Han, M., Huang, Z.: Global attractivity of an almost periodic \(N\)-species nonlinear ecological competitive model. J. Math. Anal. Appl. 337, 144–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (2002)

    MATH  Google Scholar 

  44. Letellier, C., Gilmore, R.: Poincaré sections for a new three-dimensional toroidal attractor. J. Phys. A Math. Theor. 42, 015101 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Dai, L., Wang, X.: Diagnosis of nonlinear oscillatory behavior of a fluttering plate with a periodicity ratio approach. Nonlinear Eng. 1, 67–75 (2012)

  46. Upadhyay, R.K., Iyengar, S.R.K.: Effect of seasonality on the dynamics of 2 and 3 species prey-predator systems. Nonlinear Anal. Real World Appl. 6, 509–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge with great gratitude for the supports of Chinese Natural Science Foundation (Project 39560023 to H.Z.), National Special Water Programs (No. 2009ZX07210-009, No. 2015ZX07203-011, No. 2015ZX07204-007), Department of Environmental Protection of Shandong Province (SDHBPJ-ZB-08), the China Scholarship Council (No. 201206730024), and the University of Regina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Dai, L. & Zhang, H. An approach combining periodicity ratio and secondary Poincaré map for characteristics diagnosis of nonlinear oscillatory systems. Nonlinear Dyn 84, 959–975 (2016). https://doi.org/10.1007/s11071-015-2542-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2542-y

Keywords

Navigation