Skip to main content
Log in

Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new unified kinematic description, obtained from Bezier geometry using linear mapping and position vector gradients associated with three independent parameters, is used to develop large displacement plate/shell finite elements (FE). Contrary to the conventional FE method, in the approach developed in this paper based on the absolute nodal coordinate formulation (ANCF), no distinction is made between plate and shell structures. The proposed ANCF triangular plate/shell elements have 12 coordinates per node: three position coordinates and nine position gradient coordinates that define vectors tangent to coordinate lines at the nodes. The fundamental differences between the conventional FE and the new ANCF parameterizations are highlighted. In this investigation, two different parameterizations, each of which employs independent coordinates, are used. In the first parameterization, called volume parameterization, coordinate lines along the sides of the triangular element in the straight (un-deformed) configuration are used in order to facilitate the development of closed-form cubic shape functions. In the second parameterization, called Cartesian parameterization, coordinate lines along the global axes of the structure (body) coordinate system are used to facilitate the element assembly. The element transformation between the volume and the Cartesian parameterizations is developed and used to define the structure inertia and elastic forces. Three new fully parameterized ANCF triangular plate/shell elements are developed in this investigation: a four-node mixed-coordinate element (FNMC) and two three-node elements (TN1 and TN2). All the elements developed in this investigation lead to a constant mass matrix and zero Coriolis and centrifugal forces. A non-incremental total Lagrangian procedure is used for the numerical solution of the nonlinear equations of motion. The performance of the proposed ANCF triangular plate/shell elements is analyzed by comparison with the ANCF rectangular plate element and conventional three-node linear (TNL) and six-node quadratic (SNQ) triangular plate elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Noor, A.K.: Bibliography of monographs and surveys on shells. Appl. Mech. Rev. 43, 223–234 (1990)

    Article  MathSciNet  Google Scholar 

  2. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. CRC Press, Boca Raton (2007)

    Google Scholar 

  3. Armenakas, A.E., Gazis, D.C., Herrmann, G.: Free Vibrations of Circular Cylindrical Shells. Pergamon Press, Oxford (1969)

    MATH  Google Scholar 

  4. Ashwell, D.G., Gallagher, R.H. (eds.): Finite Elements for Thin Shells and Curved Members. Wiley, London (1976)

    MATH  Google Scholar 

  5. Axelrad, E.L.: Theory of Flexible Shells. North Holland (1987)

  6. Bieger, K.W.: Circular Cylindrical Shells Subjected to Concentrated Radial Loads: Computation Methods and Charts of Influence Surfaces. Springer, Berlin (1976)

    Google Scholar 

  7. Billington, D.P.: Thin Shell Concrete Structures, 2nd edn. McGraw Hill, New York (1982)

    Google Scholar 

  8. Brush, D.O., Almroth, B.O.: Buckling of Bars, Plates and Shells. McGraw-Hill, New York (1975)

    MATH  Google Scholar 

  9. Calladine, C.R.: Theory of Shell Structures. Cambridge University Press, Cambridge (1983)

    Book  MATH  Google Scholar 

  10. Cox, H.L.: The Buckling of Plates and Shells. Pergamon Press, New York (1963)

    MATH  Google Scholar 

  11. Dym, C.L.: Introduction to the Theory of Shells. Pergamon Press, Oxford (1974)

    Google Scholar 

  12. Flugge, W.A.: Stresses in Shells, 2nd edn. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  13. Gould, P.L.: Static Analysis of Shells: A Unified Development of Surface Structures. Lexington Books, Lexington (1977)

    Google Scholar 

  14. Gould, P.L.: Finite Element Analysis of Shells of Revolution. Pitman, Marshfield (1985)

    Google Scholar 

  15. Gould, P.L.: Analysis of Shells and Plates. Springer, New York (1988)

    Book  MATH  Google Scholar 

  16. Heyman, J.: Equilibrium of Shell Structures. Clarendon Press, Oxford (1977)

    MATH  Google Scholar 

  17. Hinton, E., Owen, D.R.J. (eds.): Finite Element Software for Plates and Shells. Pineridge Press, Swansea, UK (1984)

    MATH  Google Scholar 

  18. Huang, H.C.: Static and Dynamic Analysis of Plates and Shells. Springer, New York (1989)

    Google Scholar 

  19. Hughes, T.J.R., Hinton, E. (eds.): Finite Element Methods for Plate and Shell Structures, Vol. 1: Element Technology. Pineridge Press, Swansea (1986)

    Google Scholar 

  20. Hughes, T.J.R., Hinton, E. (eds.): Finite Element Methods for Plate and Shell Structures, Vol. 1: Formulations and Algorithms. Pineridge Press, Swansea (1986)

    Google Scholar 

  21. Kelkar, V.S., Sewell, R.T.: Fundamentals of the Analysis and Design of Shell Structures. Prentice Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  22. Kratzig, W.B., Onate, E. (eds.): Computational Mechanics of Nonlinear Response of Shells. Springer, NY (1990)

    Google Scholar 

  23. Kraus, H.: Thin Elastic Shells. Wiley, NY (1967)

    MATH  Google Scholar 

  24. Kuhn, P.: Stresses in Aircraft Shell Structures. McGraw-Hill, NY (1956)

    MATH  Google Scholar 

  25. Timoshenko, S.P., Woinowsky-Krieger, K.: Theory of Plates and Shells, 2nd edn. McGraw-Hill, NY (1959)

    MATH  Google Scholar 

  26. Ugural, A.C.: Stresses in Plates and Shells. McGraw-Hill, NY (1981)

    MATH  Google Scholar 

  27. Werner, S.: Vibration of Shells and Plates. Marcel Dekker, NY (1981)

    MATH  Google Scholar 

  28. Huston, R.L.: Multibody Dynamics. Butterworth-Heineman, Boston (1990)

    MATH  Google Scholar 

  29. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  30. Wittenburg, J.: Dynamics of Multibody Systems, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  31. Guida, D., Nilvetti, F., Pappalardo, C.M.: Dry friction influence on cart pendulum dynamics. Int. J. Mech. 3, 31–38 (2009)

    Google Scholar 

  32. Guida, D., Nilvetti, F., Pappalardo, C.M.: Instability induced by dry friction. Int. J. Mech. 3, 44–51 (2009)

    Google Scholar 

  33. Guida, D., Pappalardo, C.M.: A new control algorithm for active suspension systems featuring hysteresis. FME Trans. 41, 285–290 (2013)

    Google Scholar 

  34. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kubler, L., Eberhard, P., Geisler, J.: Flexible multibody systems with large deformations and nonlinear structural damping using absolute nodal coordinates. Nonlinear Dyn. 34, 31–52 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Guida, D., Pappalardo, C.M.: Forward and inverse dynamics of nonholonomic mechanical systems. Meccanica 49, 1547–1559 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. ASME J. Vib. Acoust. 139, 1–12 (2016)

    Article  Google Scholar 

  38. Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81, 1841–1869 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Guida, D., Pappalardo, C.M.: Control design of an active suspension system for a quarter-car model with hysteresis. J. Vib. Eng. Technol. 3, 277–299 (2015)

    Google Scholar 

  40. Zhang, Z., Qi, Z., Wu, Z., Fang, H.: A spatial euler-bernoulli beam element for rigid-flexible coupling dynamic analysis of flexible structures. Shock Vib. 2015, 1–15 (2015)

    Google Scholar 

  41. Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. ASME J. Comput. Nonlinear Dyn. 11, 1–15 (2016)

    Google Scholar 

  42. Pappalardo, C.M., Wallin, M., Shabana, A.A.: ANCF/CRBF fully parametrized plate finite element. ASME J. Comput. Nonlinear Dyn. 12, 1–13 (2016)

    Google Scholar 

  43. Shabana, A.A.: Definition of ANCF finite elements. ASME J. Comput. Nonlinear Dyn. 10, 1–5 (2015)

    MathSciNet  Google Scholar 

  44. Shabana, A.A.: Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dyn. 16, 293–306 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. ASME J. Comput. Nonlinear Dyn. 4, 021009 (2009)

    Article  Google Scholar 

  46. Hu, W., Tian, Q., Hu, H.Y.: Dynamics simulation of the liquid-filled flexible multibody system via the absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75, 653–671 (2014)

    Article  MathSciNet  Google Scholar 

  47. Tian, Q., Sun, Y., Liu, C., Hu, H., Flores, P.: Elastohydrodynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. J. Comput. Struct. 114, 106–120 (2013)

    Article  Google Scholar 

  48. Liu, C., Tian, Q., Hu, H.Y.: Dynamics of large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26, 283–305 (2011)

    Article  MATH  Google Scholar 

  49. Lan, P., Shabana, A.A.: Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 61, 193–206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu, C., Tian, Q., Yan, D., Hu, H.Y.: Dynamic analysis of membrane systems undergoing overall motions, large deformations, and wrinkles via thin shell elements of ANCF. J. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Klodowski, A., Rantalainen, T., Mikkola, A., Heinonen, A., Sievanen, H.: Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones. Multibody Syst. Dyn. 25, 395–409 (2011)

    Article  MATH  Google Scholar 

  52. Nachbagauer, K., Pechstein, A.S., Irschik, H., Gerstmayr, J.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26, 245–263 (2011)

    Article  MATH  Google Scholar 

  53. Orzechowski, G., Fraczek, J.: Nearly incompressible nonlinear material models in the large deformation analysis of beams using ANCF. Nonlinear Dyn. 82, 451–464 (2015)

    Article  MathSciNet  Google Scholar 

  54. Patel, M.D., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 230, 69–84 (2015)

    Google Scholar 

  55. Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 230, 307–328 (2015)

    Google Scholar 

  56. Pappalardo, C.M., Guida, D.: Control of nonlinear vibrations using the adjoint method. Meccanica 52, 2503–2526 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Pappalardo, C.M., Guida, D.: Adjoint-based optimization procedure for active vibration control of nonlinear mechanical systems. ASME J. Dyn. Syst. Meas. Control 139(081010), 1–11 (2017)

    Google Scholar 

  58. Bathe, J.K.: Finite Element Procedures. Prentice Hall, Upper Saddle River (2007)

    MATH  Google Scholar 

  59. Matikainen, M.K., Valkeapaa, A.I., Mikkola, A.M., Schwab, A.L.: A study of moderately thick quadrilateral plate elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 31, 309–338 (2014)

    Article  MathSciNet  Google Scholar 

  60. Yoo, W.S., Lee, J.H., Park, S.J., Sohn, J.H., Pogorelov, D., Dmitrochenko, O.: Large deflection analysis of a thin plate: computer simulations and experiments. Multibody Syst. Dyn. 11, 185–208 (2004)

    Article  MATH  Google Scholar 

  61. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  62. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. McGraw-Hill, London (1977)

    MATH  Google Scholar 

  63. Specht, B.: Modified shape functions for the three-node plate bending element passing the patch test. Int. J. Numer. Methods Eng. 26, 705–715 (1988)

    Article  MATH  Google Scholar 

  64. Morley, L.S.D.: The constant-moment plate bending element. J. Strain Anal. Eng. Des. 6, 20–24 (1971)

    Article  Google Scholar 

  65. Dmitrochenko, O.N., Mikkola, A.: Two simple triangular plate elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 3, 1–8 (2008)

    Google Scholar 

  66. Morley, L.S.D., Merrifield, B.C.: On the conforming cubic triangular element for plate bending. Comput. Struct. 2, 875–892 (1972)

    Article  Google Scholar 

  67. Mohamed, A.N.A.: Three-dimensional fully parameterized triangular plate element based on the absolute nodal coordinate formulation. ASME J. Comput. Nonlinear Dyn. 8, 1–7 (2013)

    Google Scholar 

  68. Olshevskiy, A., Dmitrochenko, O., Kim, C.: Three- and four-noded planar elements using absolute nodal coordinate formulation. Multibody Syst. Dyn. 29, 255–269 (2013)

    Article  MathSciNet  Google Scholar 

  69. Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10, 17–43 (2003)

    Article  MATH  Google Scholar 

  70. Olshevskiy, A., Dmitrochenko, O., Lee, S., Kim, C.W.: A Triangular plate element 2343 using second-order absolute-nodal-coordinate slopes: numerical computation of shape functions. Nonlinear Dyn. 74, 769–781 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  71. Chang, H., Liu, C., Tian, Q., Hu, H., Mikkola, A.: Three new triangular shell elements of ANCF represented by bezier triangles. Multibody Syst. Dyn. 35, 321–351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  72. Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89, 1019–1045 (2017)

    Article  MathSciNet  Google Scholar 

  73. Pappalardo, C.M., Wang, T., Shabana, A.A.: Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dyn. 89, 2905–2932 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  74. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  75. Noor, A.K., Belytschko, T., Simo, J.C. (eds.): Analytical and Computational Models of Shells, vol. 3. ASME CED, New York (1989)

    Google Scholar 

  76. Shabana, A.A.: Computational Continuum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  77. Betsch, P., Stein, E.: A nonlinear extensible 4-node shell element based on continuum theory and assumed strain interpolations. J. Nonlinear Sci. 6, 169–199 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  78. Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.I.: Nonlinear Finite Elements for Continua and Structures, 2nd edn. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  79. Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  80. Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, New York (1978)

    MATH  Google Scholar 

Download references

Acknowledgements

The second author would like to acknowledge the financial support of the National Natural Science Foundation of China (Grants No. 11602228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Shabana.

Appendix

Appendix

In this appendix, the shape functions of the TNL and SNQ elements that use extensible directors are presented [77]. Considering a general node k, both the TNL and SNQ elements have the nodal position vector \(\mathbf{r}^{k}\) and the slope vector \(\mathbf{r}_z^k \) as nodal coordinates. The linear shape functions \(s_k ,k=1,2,\ldots ,6\), of the conventional TNL element can be explicitly written in terms of the set of volume coordinates \(\xi , \eta , \zeta \), and \(\chi \) as follows:

$$\begin{aligned} \left. \begin{array}{ll} s_1 &{}=\xi ,\quad s_2 =\frac{W}{2}\xi \chi ,\quad s_3 =\eta ,\quad s_4 =\frac{W}{2}\eta \chi ,\\ s_5 &{}=\zeta ,\quad s_6 =\frac{W}{2}\zeta \chi \end{array}\right\} \end{aligned}$$
(A.1)

where W is the TNL element thickness. The pairs of shape functions \(s_i \) and \(s_j , i=1,3,5, j=2,4,6\), are, respectively, associated with the TNL nodal positions and slopes of the corner nodes \(k, k=1,2,3\).

The quadratic shape functions \(s_k ,k=1,2,\ldots ,12\), of the SNQ element can be written in terms of the set of volume coordinates \(\xi , \eta , \zeta \), and \(\chi \) as

$$\begin{aligned} \left. \begin{array}{ll} s_1 &{}=\xi \left( {\xi -\left( {\eta +\zeta } \right) } \right) ,\quad s_2 =\frac{W}{2}\xi \chi \left( {1-2\left( {\eta +\zeta } \right) } \right) ,\\ s_3 &{}=\eta \left( {\eta -\left( {\zeta +\xi } \right) } \right) , \\ s_4 &{}=\frac{W}{2}\eta \chi \left( {1-2\left( {\zeta +\xi } \right) } \right) ,\\ s_5 &{}=\zeta \left( {\zeta -\left( {\xi +\eta } \right) } \right) ,\quad s_6 =\frac{W}{2}\zeta \chi \left( {1-2\left( {\xi +\eta } \right) } \right) , \\ s_7 &{}=4\xi \eta ,\quad s_8 =2W\xi \eta \chi ,\\ s_9 &{}=4\eta \zeta ,\quad s_{10} =2W\eta \zeta \chi ,\\ s_{11} &{}=4\zeta \xi ,\quad s_{12} =2W\zeta \xi \chi \end{array}\right\} \end{aligned}$$
(A.2)

where W is the SNQ element thickness. While the pairs of shape functions \(s_i \) and \(s_j , i=1,3,5, j=2,4,6\), are, respectively, associated with the SNQ nodal positions and slopes of the corner node \(k, k=1,2,3\), the pairs of shape functions \(s_i \) and \(s_j , i=7,9,11, j=8,10,12\), are, respectively, associated with the nodal positions and slopes of the middle node \(k, k=4,5,6\), on the sides of the element.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappalardo, C.M., Zhang, Z. & Shabana, A.A. Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn 91, 2171–2202 (2018). https://doi.org/10.1007/s11071-017-4008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-4008-x

Keywords

Navigation