Skip to main content
Log in

On the existence of heteroclinic cycles in some class of 3-dimensional piecewise affine systems with two switching planes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Since complicated dynamical behavior can occur easily near homoclinic trajectory or heteroclinic cycle in dynamical systems with dimension not less than three, this paper investigates the existence of heteroclinic cycles in some class of 3-dimensional three-zone piecewise affine systems with two switching planes. Based on the exact determination of the stable manifold, unstable manifold and analytic solution, a rigorous analytic methodology of designing chaos generators is proposed, which may be of potential applications to chaos secure communication. Furthermore, we obtain three sufficient conditions for the existence of a single or two heteroclinic cycles in three different cases. Finally, some examples are given to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bai, F., Spence, A., Stuart, A.M.: The numerical computation of heteroclinic connections in systems of gradient partial differential equations. SIAM J. Appl. Math. 53(3), 743–769 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bao, J., Yang, Q.: A new method to find homoclinic and heteroclinic orbits. Appl. Math. Comput. 217(14), 6526–6540 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Barakat, M.L., Mansingka, A.S., Radwan, A.G., Salama, K.N.: Hardware stream cipher with controllable chaos generator for colour image encryption. IET Image Process. 8(1), 33–43 (2014)

    Article  Google Scholar 

  4. Brown, R.: Generalizations of the Chua equations. IEEE Tran. Circuits Syst. I 40(11), 878–884 (1993)

    Article  MATH  Google Scholar 

  5. Buscarino, A., Camerano, C., Fortuna, L., Frasca, M.: Chaotic mimic robots. Philos. Trans. R. Soc. A 368(1918), 2179–2187 (2010)

    Article  MATH  Google Scholar 

  6. Buscarino, A., Fortuna, L., Frasca, M., Sciuto, G.: Design of time-delay chaotic electronic circuits. IEEE Trans. Circuits Syst. I Reg. Papers 58(8), 1888–1896 (2011)

    Article  MathSciNet  Google Scholar 

  7. Cao, Y., Chung, K.W., Xu, J.: A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method. Nonlinear Dyn. 64(3), 221–236 (2011)

    Article  MathSciNet  Google Scholar 

  8. Chien, T.I., Liao, T.L.: Design of secure digital communication systems using chaotic modulation cryptography and chaotic synchronization. Chaos Solit. Fract. 24(1), 241–255 (2005)

    Article  MATH  Google Scholar 

  9. Choudhury, S.R., Gambino, G.: Convergent analytic solutions for homoclinic orbits in reversible and non-reversible systems. Nonlinear Dyn. 73(3), 1769–1782 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chua, L., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits Syst. 33(11), 1072–1118 (1986)

    Article  MATH  Google Scholar 

  11. Deng, B.: Constructing homoclinic orbits and chaotic attractors. Int. J. Bifurc. Chaos 4(04), 823–841 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Freire, E., Pizarro, L., Rodríguez-Luis, A.: Numerical continuation of homoclinic orbits to non-hyperbolic equilibria in planar systems. Nonlinear Dyn. 23(4), 353–375 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galias, Z.: Positive topological entropy of Chua’s circuit: A computer assisted proof. Int. J. Bifurc. Chaos 7(02), 331–349 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glendinning, P., Tresser, C.: Heteroclinic loops leading to hyperchaos. J. Phys. Lett. 46(8), 347–352 (1985)

    Article  Google Scholar 

  15. Huan, S., Li, Q., Yang, X.S.: Chaos in three-dimensional hybrid systems and design of chaos generators. Nonlinear Dyn. 69(4), 1915–1927 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leonov, G.: Fishing principle for homoclinic and heteroclinic trajectories. Nonlinear Dyn. 78(4), 2751–2758 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Llibre, J., Ponce, E., Teruel, A.E.: Horseshoes near homoclinic orbits for piecewise linear differential systems in \(\mathbf{R^3}\). Int. J. Bifurc. Chaos 17(04), 1171–1184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

  19. Shilnikov, L.: A case of the existence of a countable number of periodic motions. Sov. Math. 6, 163–166 (1965)

    Google Scholar 

  20. Steingrube, S., Timme, M., Wörgötter, F., Manoonpong, P.: Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nat. Phys. 6(3), 224–230 (2010)

    Article  Google Scholar 

  21. Storace, M., Parodi, M., Robatto, D.: A hysteresis-based chaotic circuit: dynamics and applications. Int. J. Circuit Theory Appl. 27(6), 527–542 (1999)

    Article  MATH  Google Scholar 

  22. Tresser, C.: About some theorems by L.P. Shilnikov. Inst. H. Poincaré Phys. Thoré 40(4), 441–461 (1984)

    MATH  Google Scholar 

  23. Wang, L., Yang, X.S.: Heteroclinic cycles in a class of 3-dimensional piecewise affine systems. Nonlinear Anal. Hybri. 23, 44–60 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos, vol. 2. Springer-Verlag, New York (2003)

    MATH  Google Scholar 

  25. Wu, T., Wang, L., Yang, X.S.: Chaos generator design with piecewise affine systems. Nonlinear Dyn. 84(2), 817–832 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, T., Yang, X.S.: A new class of 3-dimensional piecewise affine systems with homoclinic orbits. Discrete Contin. Dyn. Syst. 36(9), 5119–5129 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, X., Li, Q.: Chaos generator via wien-bridge oscillator. Electron. Lett. 38(13), 623–625 (2002)

    Article  Google Scholar 

  28. Yang, X.S.: Topological horseshoes and computer assisted verification of chaotic dynamics. Int. J. Bifurc. Chaos 19(04), 1127–1145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, X.S., Li, Q.: On entropy of Chua’s circuits. Int. J. Bifurc. Chaos 15(05), 1823–1828 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, X.S., Tang, Y.: Horseshoes in piecewise continuous maps. Chaos Solitons Fract. 19(4), 841–845 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yin, Y.Z.: Experimental demonstration of chaotic synchronization in the modified Chua’s oscillators. Int. J. Bifurc. Chaos 7(06), 1401–1410 (1997)

    Article  MATH  Google Scholar 

  32. Zhou, T., Chen, G., Yang, Q.: Constructing a new chaotic system based on the Silnikov criterion. Chaos Solitons Fract. 19(4), 985–993 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editors and the anonymous reviewers for their careful reading and insightful suggestions. This work is partially supported by the National Natural Science Foundation of China (11472111), and the second author is supported by the National Natural Science Foundation of China (11702077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Song Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, L. & Yang, XS. On the existence of heteroclinic cycles in some class of 3-dimensional piecewise affine systems with two switching planes. Nonlinear Dyn 91, 67–79 (2018). https://doi.org/10.1007/s11071-017-3856-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3856-8

Keywords

Navigation