Skip to main content
Log in

Revealing the true and pseudo-singularly degenerate heteroclinic cycles

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Through revisiting the four-dimensional chaotic system discussed in Wang et al. (Dyn Syst Control 8:129, 2019), its hidden dynamical behaviors that were not reported previously can be uncovered, such as the distribution and local stability of equilibrium points, generic and degenerate pitchfork bifurcation, Hopf bifurcation, the coexistence of true and pseudo-singularly degenerate heteroclinic cycles, and the existence of globally exponentially attractive sets as well as heteroclinic orbits. The innovation of the paper lies in the following results: (1) Coexisting pseudo-singularly degenerate heteroclinic cycles (the solution approaching infinity with a short-duration transient of singularly degenerate heteroclinic cycles) and true cycles consisting of normally hyperbolic saddle foci (or saddle nodes) and stable node foci are numerically illustrated with nearby hyperchaotic attractors, verifying a kind of mechanism for formulating hyperchaos. (2) Globally exponentially attractive sets with different exponential rates are located with the aid of the Lyapunov function. (3) The existence of a pair of symmetrically heteroclinic orbits is rigorously proven by the Lyapunov function; and the definitions of both the \(\alpha \)-limit set and \(\omega \)-limit set. Since these findings improve and complement the known results, we expect to provide a reference for real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

There is no data because the results obtained in this paper can be reproduced based on the information given in this paper.

References

  1. O E Rössler Phys. Lett. A 71 155 (1979)

  2. G Grassi and S A Mascolo IEEE Trans Circuits Syst I 46 1135 (1999).

    Article  Google Scholar 

  3. V S Udaltsov, J P Goedgebuer, L Larger, J B Cuenot P Levy and W T Rhodes, Opt. Spectrosc. 95 114 (2003)

  4. Z Zhang, G Chen, and S Yu Int. J. Circuit Theor. Appl. 37 31 (2009)

  5. B Cannas and S Cincotti Int. J. Circ. Theor. Appl. 30 625 (2002).

    Article  Google Scholar 

  6. A Čenys, A Tamaševičius and A Baziliauskas R Krivickas and E Lindberg Chaos Soliton Fract. 17 349 (2003).

    Article  ADS  Google Scholar 

  7. R Vicente, J Dauden, P Colet and R Toral IEEE J. Quantum Electron. 41 541 (2005)

  8. S J Schiff, K Jerger, D H Duong, T Chang, M L Spano and W L Ditto Chaos Soliton Fract. 370 615 (1994)

  9. A Neiman, X Pei, D Russell, W Wojtenek et al Phys. Rev. Lett. 82 660 (1999).

    Article  ADS  Google Scholar 

  10. J Wang, G Chen and T Qin W Ni and X Wang Phys. Rev. E 58 3017 (1998)

  11. Y Li and X Liu G Chen and X Liao Int. J. Circuit Theor. Appl. 39 865 (2011)

  12. T Kapitaniak and L O Chua Int. J. Bifur. Chaos 4 477 (1994).

    Article  Google Scholar 

  13. C Ning and H Haken Phys. Rev. A 41 3826 (1990).

    Article  ADS  Google Scholar 

  14. L Yang, Q Yang and G Chen Commun. Nonlinear Sci. Numer. Simul. 28 18500581 (2018).

    MathSciNet  Google Scholar 

  15. Q Deng, C Wang and L Yang Int. J. Bifur. Chaos 30 20500861 (2020)

    Google Scholar 

  16. H Wang and X Li Chaos Soliton Fract. 106 5 (2018).

    Article  ADS  Google Scholar 

  17. H Wang and G Dong Appl. Math. Comput. 346 272 (2019).

    MathSciNet  Google Scholar 

  18. H Wang and F Zhang Discr. Contin. Dyn. Syst. Ser. B 25 1791 (2020).

    Google Scholar 

  19. H Wang, H Fan and J Pan Int. J. Bifur. Chaos 31 21502081 (2021)

    Google Scholar 

  20. D Li, X Wu and J Lu Chaos Soliton Fract. 39 1290 (2009)

  21. P Wang D Li and Q Hu Commun. Nonlinear Sci. Numer. Simul. 15 2514 (2010)

  22. P Wang, D Li, X Wu, J Lü, and X Yu Int. J. Bifur. Chaos 21 2679 (2011)

  23. F Zhang, Y Li and C Mu J. Math. Res. Appl. 33 345 (2013)

  24. X Liao New Research on Some Mathematical Problems of Lorenz Chaotic Family (Wuhan: Huazhong University of Science & Technology Press) (2017)

  25. G A Leonov, B R Mokaev, O A Andrievskiy and F Zhang Mathematics 50 15 (2017)

  26. B Munmuangsaen and B Srisuchinwong Chaos Soliton Fract. 107 61 (2018).

    Article  ADS  Google Scholar 

  27. J C Sprott and B Munmuangsaen Chaos Soliton Fract. 113 261 (2018).

    Article  ADS  Google Scholar 

  28. Z Wang, H Niu and D Tan Dyn. Syst. Control 8 129 (2019)

  29. J K Hale Ordinary Differential Equations (New York: Wiley) (1969)

  30. J Guckenheimer and P Holmes Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 3rd edn. (Berlin: Springer) (1983)

    Book  MATH  Google Scholar 

  31. S Wiggins Introduction to Applied Nonlinear Dynamical System and Chaos (New York: Springer) (2003)

  32. Y A Kuzenetsov Elements of Applied Bifurcation Theory, Third ed. (New York: Springer) (2004)

  33. T Li, G Chen and G Chen Int. J. Bifur. Chaos 16 3035 (2006)

  34. G Tigan and D Constantinescu Chaos Soliton Fract. 42 20 (2009).

    Article  ADS  Google Scholar 

  35. Y Liu and Q Yang Nonl. Anal.: RWA 11 2563 (2010).

    Article  Google Scholar 

  36. X Li and H Wang Int. J. Bifur. Chaos 21 2695 (2011).

    Article  Google Scholar 

  37. X Li and Q Ou Nonlinear Dyn. 65 255 (2011)

  38. Y Liu and W Pang Nonlinear Dyn. 67 1595 (2012).

    Article  Google Scholar 

  39. X Li and P Wang Nonlinear Dyn. 73 621 (2013).

    Article  Google Scholar 

  40. Y Chen and Q Yang Nonlinear Dyn. 77 569 (2014).

    Article  Google Scholar 

  41. H Wang and X Li Int. J. Bifur. Chaos 24 14501331 (2014).

    Google Scholar 

  42. H Wang and X Li Nonlinear Dyn. 80 969 (2015).

    Article  ADS  Google Scholar 

  43. H Wang, C Li and X Li Int. J. Bifur. Chaos 26 16501941 (2016).

    ADS  Google Scholar 

  44. G Tigan and J Llibre Int. J. Bifur. Chaos 26 16500721 (2016).

    Article  Google Scholar 

  45. H Wang and X Li Int. J. Bifur. Chaos 27 1750110 (2017).

    Article  Google Scholar 

  46. X Li and H Wang J. Appl. Anal. Comput. 10 249 (2020).

    MathSciNet  Google Scholar 

  47. H Wang, G Ke, J Pan, F Hu and H Fan Eur. Phys. J. Spec. Top. 359 (2022)

Download references

Acknowledgements

This work is supported in part by National Natural Science Foundation of China under Grant 12001489, in part by Natural Science Foundation of Zhejiang Guangsha Vocational and Technical University of construction under Grant 2022KYQD-KGY, in part by Zhejiang public welfare Technology Application Research Project of China under Grant LGN21F020003, in part by Natural Science Foundation of Taizhou University under Grant T20210906033, in part by NSF of Zhejiang Province under Grant LQ18A010001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ke.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ke, G., Pan, J. et al. Revealing the true and pseudo-singularly degenerate heteroclinic cycles. Indian J Phys 97, 3601–3615 (2023). https://doi.org/10.1007/s12648-023-02689-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02689-w

Keywords

Mathematics Subject Classification

Navigation