Skip to main content
Log in

Stability properties of a two-dimensional system involving one Caputo derivative and applications to the investigation of a fractional-order Morris–Lecar neuronal model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Necessary and sufficient conditions are given for the asymptotic stability and instability of a two-dimensional incommensurate order autonomous linear system, which consists of a differential equation with a Caputo-type fractional-order derivative and a classical first-order differential equation. These conditions are expressed in terms of the elements of the system’s matrix, as well as of the fractional order of the Caputo derivative. In this setting, we obtain a generalization of the well-known Routh–Hurwitz conditions. These theoretical results are then applied to the analysis of a two-dimensional fractional-order Morris–Lecar neuronal model, focusing on stability and instability properties. This fractional-order model is built up taking into account the dimensional consistency of the resulting system of differential equations. The occurrence of Hopf bifurcations is also discussed. Numerical simulations exemplify the theoretical results, revealing rich spiking behavior. The obtained results are also compared to similar ones obtained for the classical integer-order Morris–Lecar neuronal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anastasio, T.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72(1), 69–79 (1994)

    Article  Google Scholar 

  2. Bonnet, C., Partington, J.R.: Analysis of fractional delay systems of retarded and neutral type. Automatica 38(7), 1133–1138 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Čermák, J., Kisela, T.: Stability properties of two-term fractional differential equations. Nonlinear Dyn. 80(4), 1673–1684 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, J., Lundberg, K.H., Davison, D.E., Bernstein, D.S.: The final value theorem revisited: infinite limits and irrational functions. IEEE Control Syst. Mag. 27(3), 97–99 (2007)

    Article  Google Scholar 

  5. Cottone, G., Paola, M.D., Santoro, R.: A novel exact representation of stationary colored gaussian processes (fractional differential approach). J. Phys. A Math. Theor. 43(8), 085002 (2010). http://stacks.iop.org/1751-8121/43/i=8/a=085002

  6. Datsko, B., Luchko, Y.: Complex oscillations and limit cycles in autonomous two-component incommensurate fractional dynamical systems. Math. Balk. 26, 65–78 (2012)

    MATH  MathSciNet  Google Scholar 

  7. Deng, W., Li, C., Lu, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2004)

    Google Scholar 

  9. Diethelm, K.: A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn. 71(4), 613–619 (2013)

    Article  MathSciNet  Google Scholar 

  10. Doetsch, G.: Introduction to the Theory and Application of the Laplace Transformation. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  11. El-Saka, H., Ahmed, E., Shehata, M., El-Sayed, A.: On stability, persistence, and Hopf bifurcation in fractional order dynamical systems. Nonlinear Dyn. 56(1–2), 121–126 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Engheia, N.: On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag. Mag. 39(4), 35–46 (1997)

    Article  Google Scholar 

  13. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  14. Gorenflo, R., Mainardi, F.: Fractional calculus, integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, CISM Courses and Lecture Notes, vol. 378, pp. 223–276. Springer, Berlin (1997)

    Chapter  Google Scholar 

  15. Henry, B., Wearne, S.: Existence of turing instabilities in a two-species fractional reaction-diffusion system. SIAM J. Appl. Math. 62, 870–887 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Heymans, N., Bauwens, J.C.: Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta 33, 210–219 (1994)

    Article  Google Scholar 

  17. Hindmarsh, J., Rose, R.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)

    Article  Google Scholar 

  18. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  19. Jun, D., Guang-jun, Z., Yong, X., Hong, Y., Jue, W.: Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model. Cogn. Neurodyn. 8(2), 167–175 (2014)

    Article  Google Scholar 

  20. Kaslik, E., Sivasundaram, S.: Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal. Real World Appl. 13(3), 1489–1497 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  22. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer, Berlin (2004)

    MATH  Google Scholar 

  23. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)

    MATH  Google Scholar 

  24. Li, C., Ma, Y.: Fractional dynamical system and its linearization theorem. Nonlinear Dyn. 71(4), 621–633 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, C., Zhang, F.: A survey on the stability of fractional differential equations. Euro. Phys. J. Spec. Top. 193, 27–47 (2011)

    Article  Google Scholar 

  26. Li, Y., Chen, Y., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lundstrom, B., Higgs, M., Spain, W., Fairhall, A.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11(11), 1335–1342 (2008)

    Article  Google Scholar 

  28. Ma, L., Li, C.: Center manifold of fractional dynamical system. J. Comput. Nonlinear Dyn. 11(2), 021010 (2016)

    Article  MathSciNet  Google Scholar 

  29. Mainardi, F.: Fractional relaxation-oscillation and fractional phenomena. Chaos Solitons Fractals 7(9), 1461–1477 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational engineering in systems applications, vol. 2, pp. 963–968. IMACS, IEEE-SMC, Lille, France (1996)

  31. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

  32. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193 (1981)

    Article  Google Scholar 

  33. Odibat, Z.M.: Analytic study on linear systems of fractional differential equations. Comput. Math. Appl. 59(3), 1171–1183 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Petras, I.: Stability of fractional-order systems with rational orders. arXiv preprint arXiv:0811.4102 (2008)

  35. Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)

    MATH  Google Scholar 

  36. Radwan, A.G., Elwakil, A.S., Soliman, A.M.: Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circuits Syst. I Regul. Pap. 55(7), 2051–2063 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Rivero, M., Rogosin, S.V., Tenreiro Machado, J.A., Trujillo, J.J.: Stability of fractional order systems. Math. Probl. Eng. 2013, 356215 (2013)

  38. Sabatier, J., Farges, C.: On stability of commensurate fractional order systems. Int. J. Bifurc. Chaos 22(04), 1250084 (2012)

    Article  MATH  Google Scholar 

  39. Shi, M., Wang, Z.: Abundant bursting patterns of a fractional-order Morris–Lecar neuron model. Commun. Nonlinear Sci. Numer. Simul. 19(6), 1956–1969 (2014)

    Article  MathSciNet  Google Scholar 

  40. Sugimoto, N.: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631–653 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  41. Teka, W., Marinov, T.M., Santamaria, F.: Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Comput. Biol. 10(3), e1003526 (2014)

    Article  Google Scholar 

  42. Teka, W., Stockton, D., Santamaria, F.: Power-law dynamics of membrane conductances increase spiking diversity in a Hodgkin–Huxley model. PLoS Comput. Biol. 12(3), e1004776 (2016)

    Article  Google Scholar 

  43. Trächtler, A.: On BIBO stability of systems with irrational transfer function. arXiv:1603.01059 (2016)

  44. Tsumoto, K., Kitajima, H., Yoshinaga, T., Aihara, K., Kawakami, H.: Bifurcations in Morris–Lecar neuron model. Neurocomputing 69(4), 293–316 (2006)

    Article  Google Scholar 

  45. Upadhyay, R.K., Mondal, A., Teka, W.W.: Fractional-order excitable neural system with bidirectional coupling. Nonlinear Dyn. 87, 1–15 (2016)

    MathSciNet  Google Scholar 

  46. Wang, Z., Yang, D., Zhang, H.: Stability analysis on a class of nonlinear fractional-order systems. Nonlinear Dyn. 86(2), 1023–1033 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  47. Weinberg, S.H.: Membrane capacitive memory alters spiking in neurons described by the fractional-order Hodgkin–Huxley model. PloS one 10(5), e0126629 (2015)

    Article  Google Scholar 

  48. Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Kaslik.

Additional information

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, Project No. PN-II-RU-TE-2014-4-0270.

Appendices

A Proof of Proposition 1.

We compute:

$$\begin{aligned} ^cD^qg(x)&=\frac{1}{\Gamma (-q)}\int \limits _{0}^{x}(x-t)^{-q-1}[g(t)-g(0)]\mathrm{d}t\\&=\frac{1}{\Gamma (-q)}\int \limits _{0}^{x}(x-t)^{-q-1}[f(at)-f(0)]\mathrm{d}t\\&=\frac{1}{a\Gamma (-q)}\int \limits _{0}^{ax}\Big (x-\frac{s}{a}\Big )^{-q-1}[f(s)-f(0)]\mathrm{d}t\\&=\frac{1}{a\Gamma (-q)}\int \limits _{0}^{ax}a^{q+1}(ax-s)^{-q-1}[f(s)-f(0)]\mathrm{d}t\\&=\frac{a^{q}}{\Gamma (-q)}\int \limits _{0}^{ax}(ax-s)^{-q-1}[f(s)-f(0)]\mathrm{d}t\\&=a^q (^cD^qf)(ax) \end{aligned}$$

It follows that:

$$\begin{aligned} ^cD^q g(x)=a^q\cdot ^cD^qf(ax),\quad \text {for any }a\ne 0, \end{aligned}$$

which completes the proof. \(\square \)

B Deduction of the nondimensional system (11)

Starting from system (9), we consider the substitutions

$$\begin{aligned} v(t)=kV(\alpha t)\quad ,\quad n(t)=N(\alpha t), \end{aligned}$$

where \(\alpha \) and k will be deduced in the following.

Applying Proposition 2, we have:

$$\begin{aligned} ^cD^qv(t)&=k\cdot ^cD^q[V(\alpha t)]\\&=k\alpha ^q(^cD^qV)(\alpha t)\\&=k\alpha ^q\frac{1}{C_\mathrm{m}(q)}\Big [g_{Ca}M_\infty (V(\alpha t))(V_{Ca}-V(\alpha t))+\\&\quad + \, g_KN(\alpha t)(V_K-V(\alpha t))\\&\quad + \, g_L(V_L-V(\alpha t))+I\Big ]\\&=k\alpha ^q\frac{1}{C_\mathrm{m}(q)}\Big [g_{Ca}M_\infty \Big (\frac{v(t)}{k}\Big )\Big (V_{Ca}-\frac{v(t)}{k}\Big )+\\&\quad + \, g_K n(t)\Big (V_K-\frac{v(t)}{k}\Big )\\&\quad + \, g_L\Big (V_L-\frac{v(t)}{k}\Big )+I\Big ]\\&=\frac{\alpha ^q}{C_\mathrm{m}(q)}\Big [g_{Ca}m_\infty (v)(kV_{Ca}-v)+\\&\quad + \, g_Kn(kV_K-v)+g_L(kV_L-v)+kI\Big ] \end{aligned}$$

and therefore, it makes sense to choose \(k=\frac{1}{V_{Ca}}\).

Furthermore, with the notations from Sect. 3, we obtain:

$$\begin{aligned} ^cD^qv(t)&=R_\mathrm{m}\Big (\frac{\alpha }{\tau }\Big )^q\Big [g_{Ca}m_\infty (v)(1-v)\\&\qquad \,+g_K n(v_K-v)+ g_L(v_L-v)+\tilde{I}\Big ]. \end{aligned}$$

At this step, it is easy to see that it makes sense to consider \(\alpha =\tau \), which leads to:

$$\begin{aligned} ^cD^qv(t)&=R_\mathrm{m}\Big [g_{Ca}m_\infty (v)(1-v)+g_K n(v_K-v)\\&\quad +g_L(v_L-v)+\frac{I}{V_{Ca}}\Big ]\\&=\,\gamma _{Ca}m_\infty (v)(1-v)\\&\quad +\gamma _K n(v_K-v)+\gamma _L(v_L-v)+\tilde{I}. \end{aligned}$$

As for the second equation, applying Proposition 2, and taking into account that \(\alpha =\tau \), we obtain:

$$\begin{aligned} ^cD^pn(t)&=\alpha ^p(^cD^p)(\alpha t)\\&=\,(\alpha \overline{\lambda _N})^p\lambda (V(\alpha t))[N_\infty (V(\alpha t))-N(\alpha t)]\\&=\,(\tau \overline{\lambda _N})^p\lambda \Big (\frac{v(t)}{k}\Big )\Big [N_\infty \Big (\frac{v(t)}{k}\Big )-n(t)\Big ]\\&=\,(\tau \overline{\lambda _N})^p\cdot \ell (v)[n_\infty (v)-n], \end{aligned}$$

Therefore, the nondimensional system (11) is found.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandibur, O., Kaslik, E. Stability properties of a two-dimensional system involving one Caputo derivative and applications to the investigation of a fractional-order Morris–Lecar neuronal model. Nonlinear Dyn 90, 2371–2386 (2017). https://doi.org/10.1007/s11071-017-3809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3809-2

Keywords

Navigation