Advertisement

Nonlinear Dynamics

, Volume 90, Issue 4, pp 2371–2386 | Cite as

Stability properties of a two-dimensional system involving one Caputo derivative and applications to the investigation of a fractional-order Morris–Lecar neuronal model

  • Oana Brandibur
  • Eva KaslikEmail author
Original Paper

Abstract

Necessary and sufficient conditions are given for the asymptotic stability and instability of a two-dimensional incommensurate order autonomous linear system, which consists of a differential equation with a Caputo-type fractional-order derivative and a classical first-order differential equation. These conditions are expressed in terms of the elements of the system’s matrix, as well as of the fractional order of the Caputo derivative. In this setting, we obtain a generalization of the well-known Routh–Hurwitz conditions. These theoretical results are then applied to the analysis of a two-dimensional fractional-order Morris–Lecar neuronal model, focusing on stability and instability properties. This fractional-order model is built up taking into account the dimensional consistency of the resulting system of differential equations. The occurrence of Hopf bifurcations is also discussed. Numerical simulations exemplify the theoretical results, revealing rich spiking behavior. The obtained results are also compared to similar ones obtained for the classical integer-order Morris–Lecar neuronal model.

Keywords

Caputo derivative Morris–Lecar Mathematical model Fractional-order derivative Stability Instability Bifurcation Numerical simulation 

References

  1. 1.
    Anastasio, T.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72(1), 69–79 (1994)CrossRefGoogle Scholar
  2. 2.
    Bonnet, C., Partington, J.R.: Analysis of fractional delay systems of retarded and neutral type. Automatica 38(7), 1133–1138 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Čermák, J., Kisela, T.: Stability properties of two-term fractional differential equations. Nonlinear Dyn. 80(4), 1673–1684 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chen, J., Lundberg, K.H., Davison, D.E., Bernstein, D.S.: The final value theorem revisited: infinite limits and irrational functions. IEEE Control Syst. Mag. 27(3), 97–99 (2007)CrossRefGoogle Scholar
  5. 5.
    Cottone, G., Paola, M.D., Santoro, R.: A novel exact representation of stationary colored gaussian processes (fractional differential approach). J. Phys. A Math. Theor. 43(8), 085002 (2010). http://stacks.iop.org/1751-8121/43/i=8/a=085002
  6. 6.
    Datsko, B., Luchko, Y.: Complex oscillations and limit cycles in autonomous two-component incommensurate fractional dynamical systems. Math. Balk. 26, 65–78 (2012)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Deng, W., Li, C., Lu, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2004)Google Scholar
  9. 9.
    Diethelm, K.: A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn. 71(4), 613–619 (2013)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Doetsch, G.: Introduction to the Theory and Application of the Laplace Transformation. Springer, Berlin (1974)CrossRefzbMATHGoogle Scholar
  11. 11.
    El-Saka, H., Ahmed, E., Shehata, M., El-Sayed, A.: On stability, persistence, and Hopf bifurcation in fractional order dynamical systems. Nonlinear Dyn. 56(1–2), 121–126 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Engheia, N.: On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag. Mag. 39(4), 35–46 (1997)CrossRefGoogle Scholar
  13. 13.
    FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)CrossRefGoogle Scholar
  14. 14.
    Gorenflo, R., Mainardi, F.: Fractional calculus, integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, CISM Courses and Lecture Notes, vol. 378, pp. 223–276. Springer, Berlin (1997)CrossRefGoogle Scholar
  15. 15.
    Henry, B., Wearne, S.: Existence of turing instabilities in a two-species fractional reaction-diffusion system. SIAM J. Appl. Math. 62, 870–887 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Heymans, N., Bauwens, J.C.: Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta 33, 210–219 (1994)CrossRefGoogle Scholar
  17. 17.
    Hindmarsh, J., Rose, R.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)CrossRefGoogle Scholar
  18. 18.
    Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)CrossRefGoogle Scholar
  19. 19.
    Jun, D., Guang-jun, Z., Yong, X., Hong, Y., Jue, W.: Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model. Cogn. Neurodyn. 8(2), 167–175 (2014)CrossRefGoogle Scholar
  20. 20.
    Kaslik, E., Sivasundaram, S.: Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal. Real World Appl. 13(3), 1489–1497 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  22. 22.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer, Berlin (2004)zbMATHGoogle Scholar
  23. 23.
    Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)zbMATHGoogle Scholar
  24. 24.
    Li, C., Ma, Y.: Fractional dynamical system and its linearization theorem. Nonlinear Dyn. 71(4), 621–633 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Li, C., Zhang, F.: A survey on the stability of fractional differential equations. Euro. Phys. J. Spec. Top. 193, 27–47 (2011)CrossRefGoogle Scholar
  26. 26.
    Li, Y., Chen, Y., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Lundstrom, B., Higgs, M., Spain, W., Fairhall, A.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11(11), 1335–1342 (2008)CrossRefGoogle Scholar
  28. 28.
    Ma, L., Li, C.: Center manifold of fractional dynamical system. J. Comput. Nonlinear Dyn. 11(2), 021010 (2016)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Mainardi, F.: Fractional relaxation-oscillation and fractional phenomena. Chaos Solitons Fractals 7(9), 1461–1477 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational engineering in systems applications, vol. 2, pp. 963–968. IMACS, IEEE-SMC, Lille, France (1996)Google Scholar
  31. 31.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)Google Scholar
  32. 32.
    Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193 (1981)CrossRefGoogle Scholar
  33. 33.
    Odibat, Z.M.: Analytic study on linear systems of fractional differential equations. Comput. Math. Appl. 59(3), 1171–1183 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Petras, I.: Stability of fractional-order systems with rational orders. arXiv preprint arXiv:0811.4102 (2008)
  35. 35.
    Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)zbMATHGoogle Scholar
  36. 36.
    Radwan, A.G., Elwakil, A.S., Soliman, A.M.: Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circuits Syst. I Regul. Pap. 55(7), 2051–2063 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Rivero, M., Rogosin, S.V., Tenreiro Machado, J.A., Trujillo, J.J.: Stability of fractional order systems. Math. Probl. Eng. 2013, 356215 (2013)Google Scholar
  38. 38.
    Sabatier, J., Farges, C.: On stability of commensurate fractional order systems. Int. J. Bifurc. Chaos 22(04), 1250084 (2012)CrossRefzbMATHGoogle Scholar
  39. 39.
    Shi, M., Wang, Z.: Abundant bursting patterns of a fractional-order Morris–Lecar neuron model. Commun. Nonlinear Sci. Numer. Simul. 19(6), 1956–1969 (2014)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Sugimoto, N.: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631–653 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Teka, W., Marinov, T.M., Santamaria, F.: Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Comput. Biol. 10(3), e1003526 (2014)CrossRefGoogle Scholar
  42. 42.
    Teka, W., Stockton, D., Santamaria, F.: Power-law dynamics of membrane conductances increase spiking diversity in a Hodgkin–Huxley model. PLoS Comput. Biol. 12(3), e1004776 (2016)CrossRefGoogle Scholar
  43. 43.
    Trächtler, A.: On BIBO stability of systems with irrational transfer function. arXiv:1603.01059 (2016)
  44. 44.
    Tsumoto, K., Kitajima, H., Yoshinaga, T., Aihara, K., Kawakami, H.: Bifurcations in Morris–Lecar neuron model. Neurocomputing 69(4), 293–316 (2006)CrossRefGoogle Scholar
  45. 45.
    Upadhyay, R.K., Mondal, A., Teka, W.W.: Fractional-order excitable neural system with bidirectional coupling. Nonlinear Dyn. 87, 1–15 (2016)MathSciNetGoogle Scholar
  46. 46.
    Wang, Z., Yang, D., Zhang, H.: Stability analysis on a class of nonlinear fractional-order systems. Nonlinear Dyn. 86(2), 1023–1033 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Weinberg, S.H.: Membrane capacitive memory alters spiking in neurons described by the fractional-order Hodgkin–Huxley model. PloS one 10(5), e0126629 (2015)CrossRefGoogle Scholar
  48. 48.
    Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institute e-Austria TimişoaraTimişoaraRomania
  2. 2.West University of TimişoaraTimişoaraRomania

Personalised recommendations