Nonlinear Dynamics

, Volume 90, Issue 4, pp 2371–2386

# Stability properties of a two-dimensional system involving one Caputo derivative and applications to the investigation of a fractional-order Morris–Lecar neuronal model

• Oana Brandibur
• Eva Kaslik
Original Paper

## Abstract

Necessary and sufficient conditions are given for the asymptotic stability and instability of a two-dimensional incommensurate order autonomous linear system, which consists of a differential equation with a Caputo-type fractional-order derivative and a classical first-order differential equation. These conditions are expressed in terms of the elements of the system’s matrix, as well as of the fractional order of the Caputo derivative. In this setting, we obtain a generalization of the well-known Routh–Hurwitz conditions. These theoretical results are then applied to the analysis of a two-dimensional fractional-order Morris–Lecar neuronal model, focusing on stability and instability properties. This fractional-order model is built up taking into account the dimensional consistency of the resulting system of differential equations. The occurrence of Hopf bifurcations is also discussed. Numerical simulations exemplify the theoretical results, revealing rich spiking behavior. The obtained results are also compared to similar ones obtained for the classical integer-order Morris–Lecar neuronal model.

## Keywords

Caputo derivative Morris–Lecar Mathematical model Fractional-order derivative Stability Instability Bifurcation Numerical simulation

## References

1. 1.
Anastasio, T.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72(1), 69–79 (1994)
2. 2.
Bonnet, C., Partington, J.R.: Analysis of fractional delay systems of retarded and neutral type. Automatica 38(7), 1133–1138 (2002)
3. 3.
Čermák, J., Kisela, T.: Stability properties of two-term fractional differential equations. Nonlinear Dyn. 80(4), 1673–1684 (2015)
4. 4.
Chen, J., Lundberg, K.H., Davison, D.E., Bernstein, D.S.: The final value theorem revisited: infinite limits and irrational functions. IEEE Control Syst. Mag. 27(3), 97–99 (2007)
5. 5.
Cottone, G., Paola, M.D., Santoro, R.: A novel exact representation of stationary colored gaussian processes (fractional differential approach). J. Phys. A Math. Theor. 43(8), 085002 (2010). http://stacks.iop.org/1751-8121/43/i=8/a=085002
6. 6.
Datsko, B., Luchko, Y.: Complex oscillations and limit cycles in autonomous two-component incommensurate fractional dynamical systems. Math. Balk. 26, 65–78 (2012)
7. 7.
Deng, W., Li, C., Lu, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)
8. 8.
Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2004)Google Scholar
9. 9.
Diethelm, K.: A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn. 71(4), 613–619 (2013)
10. 10.
Doetsch, G.: Introduction to the Theory and Application of the Laplace Transformation. Springer, Berlin (1974)
11. 11.
El-Saka, H., Ahmed, E., Shehata, M., El-Sayed, A.: On stability, persistence, and Hopf bifurcation in fractional order dynamical systems. Nonlinear Dyn. 56(1–2), 121–126 (2009)
12. 12.
Engheia, N.: On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag. Mag. 39(4), 35–46 (1997)
13. 13.
FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)
14. 14.
Gorenflo, R., Mainardi, F.: Fractional calculus, integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, CISM Courses and Lecture Notes, vol. 378, pp. 223–276. Springer, Berlin (1997)
15. 15.
Henry, B., Wearne, S.: Existence of turing instabilities in a two-species fractional reaction-diffusion system. SIAM J. Appl. Math. 62, 870–887 (2002)
16. 16.
Heymans, N., Bauwens, J.C.: Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta 33, 210–219 (1994)
17. 17.
Hindmarsh, J., Rose, R.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)
18. 18.
Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)
19. 19.
Jun, D., Guang-jun, Z., Yong, X., Hong, Y., Jue, W.: Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model. Cogn. Neurodyn. 8(2), 167–175 (2014)
20. 20.
Kaslik, E., Sivasundaram, S.: Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal. Real World Appl. 13(3), 1489–1497 (2012)
21. 21.
Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
22. 22.
Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer, Berlin (2004)
23. 23.
Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)
24. 24.
Li, C., Ma, Y.: Fractional dynamical system and its linearization theorem. Nonlinear Dyn. 71(4), 621–633 (2013)
25. 25.
Li, C., Zhang, F.: A survey on the stability of fractional differential equations. Euro. Phys. J. Spec. Top. 193, 27–47 (2011)
26. 26.
Li, Y., Chen, Y., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)
27. 27.
Lundstrom, B., Higgs, M., Spain, W., Fairhall, A.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11(11), 1335–1342 (2008)
28. 28.
Ma, L., Li, C.: Center manifold of fractional dynamical system. J. Comput. Nonlinear Dyn. 11(2), 021010 (2016)
29. 29.
Mainardi, F.: Fractional relaxation-oscillation and fractional phenomena. Chaos Solitons Fractals 7(9), 1461–1477 (1996)
30. 30.
Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational engineering in systems applications, vol. 2, pp. 963–968. IMACS, IEEE-SMC, Lille, France (1996)Google Scholar
31. 31.
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)Google Scholar
32. 32.
Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193 (1981)
33. 33.
Odibat, Z.M.: Analytic study on linear systems of fractional differential equations. Comput. Math. Appl. 59(3), 1171–1183 (2010)
34. 34.
Petras, I.: Stability of fractional-order systems with rational orders. arXiv preprint arXiv:0811.4102 (2008)
35. 35.
Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)
36. 36.
Radwan, A.G., Elwakil, A.S., Soliman, A.M.: Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circuits Syst. I Regul. Pap. 55(7), 2051–2063 (2008)
37. 37.
Rivero, M., Rogosin, S.V., Tenreiro Machado, J.A., Trujillo, J.J.: Stability of fractional order systems. Math. Probl. Eng. 2013, 356215 (2013)Google Scholar
38. 38.
Sabatier, J., Farges, C.: On stability of commensurate fractional order systems. Int. J. Bifurc. Chaos 22(04), 1250084 (2012)
39. 39.
Shi, M., Wang, Z.: Abundant bursting patterns of a fractional-order Morris–Lecar neuron model. Commun. Nonlinear Sci. Numer. Simul. 19(6), 1956–1969 (2014)
40. 40.
Sugimoto, N.: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631–653 (1991)
41. 41.
Teka, W., Marinov, T.M., Santamaria, F.: Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Comput. Biol. 10(3), e1003526 (2014)
42. 42.
Teka, W., Stockton, D., Santamaria, F.: Power-law dynamics of membrane conductances increase spiking diversity in a Hodgkin–Huxley model. PLoS Comput. Biol. 12(3), e1004776 (2016)
43. 43.
Trächtler, A.: On BIBO stability of systems with irrational transfer function. arXiv:1603.01059 (2016)
44. 44.
Tsumoto, K., Kitajima, H., Yoshinaga, T., Aihara, K., Kawakami, H.: Bifurcations in Morris–Lecar neuron model. Neurocomputing 69(4), 293–316 (2006)
45. 45.
Upadhyay, R.K., Mondal, A., Teka, W.W.: Fractional-order excitable neural system with bidirectional coupling. Nonlinear Dyn. 87, 1–15 (2016)
46. 46.
Wang, Z., Yang, D., Zhang, H.: Stability analysis on a class of nonlinear fractional-order systems. Nonlinear Dyn. 86(2), 1023–1033 (2016)
47. 47.
Weinberg, S.H.: Membrane capacitive memory alters spiking in neurons described by the fractional-order Hodgkin–Huxley model. PloS one 10(5), e0126629 (2015)
48. 48.
Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)