Skip to main content
Log in

Fractional dynamical system and its linearization theorem

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nowadays, it is known that the solution to a fractional differential equation can’t generally define a dynamical system in the sense of semigroup property due to the history memory induced by the weakly singular kernel. But we can still establish the similar relationship between a fractional differential equation and the corresponding fractional flow under a reasonable condition. In this paper, we firstly present some results on fractional dynamical system defined by the fractional differential equation with Caputo derivative. Furthermore, the linearization and stability theorems of the nonlinear fractional system are also shown. As a byproduct, we prove Audounet–Matignon–Montseny conjecture. Several illustrative examples are given as well to support the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sheng, H., Chen, Y.Q., Qiu, T.S.: Fractional Processes and Fractional-Order Signal Processing. Springer, New York (2012)

    Book  MATH  Google Scholar 

  2. Metzler, R., Klafter, J.: The random Walk’s guide to anomalous diffusion: a fractional dynamic approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003)

    Book  Google Scholar 

  4. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  5. Baleanu, D., Trujillo, J.J.: On exact solutions of a class of fractional Euler–Lagrange equations. Nonlinear Dyn. 52, 331–335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kunita, H.: Stochastic differential equations and stochastic flows of diffeomorphisms. Lect. Notes Math. 1097, 143–303 (1984)

    Article  MathSciNet  Google Scholar 

  7. Arnold, L.: Random Dynamical Systems. Springer, New York (1998)

    MATH  Google Scholar 

  8. Mohammed, S.-E.A., Bell, D.R.: Degenerate stochastic differential equations, flows and hypoellipticity. Proc. Symp. Pure Math. 57, 553–564 (1995)

    MathSciNet  Google Scholar 

  9. Mohammed, S.-E.A., Scheutzow, M.K.R.: The stable manifold theorem for non-linear stochastic systems with memory. I. Existence of the semiflow. J. Funct. Anal. 205, 271–305 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, C.P., Gong, Z.Q., Qian, D.L., Chen, Y.Q.: On the bound of the Lyapunov exponents for the fractional differential systems. Chaos 20(1), 013127 (2010)

    Article  MathSciNet  Google Scholar 

  11. Li, C.P., Zhao, Z.G.: Introduction to fractional integrability and differentiability. Eur. Phys. J. Spec. Top. 193, 5–26 (2011)

    Article  Google Scholar 

  12. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivative Theory and Applications. Gordon & Breach, New York (1993)

    Google Scholar 

  13. Li, C.P., Qian, D.L., Chen, Y.Q.: On Riemann–Liouville and Caputo derivatives. Discrete Dyn. Nat. Soc. 2011, 562494 (2011)

    MathSciNet  Google Scholar 

  14. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006)

    MATH  Google Scholar 

  15. Hartman, P.: A lemma in the theory of structural stability of differential equations. Proc. Am. Math. Soc. 11(4), 610–620 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hartman, P.: On the local linearization of differential equations. Proc. Am. Math. Soc. 14(4), 568–573 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pugh, C.C.: On a theorem of P. Hartman. Am. J. Math. 91(2), 363–367 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hartman, P.: Ordinary Differential Equations, 2nd edn. Birkhäuser, Basel (1982)

    MATH  Google Scholar 

  19. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. World Scientific, Singapore (2012)

    MATH  Google Scholar 

  20. Li, C.P., Zeng, F.H.: The finite difference methods for fractional differential equations. Numer. Funct. Anal. Optim. 34(1), 1230014 (2013)

    Google Scholar 

  21. Qian, D.L., Li, C.P., Agarwal, R.P., Wong, P.J.Y.: Stability analysis of fractional differential system with Riemann-Liouville derivative. Math. Comput. Model. 52, 862–874 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, C.P., Zhang, F.R.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193, 27–47 (2011)

    Article  Google Scholar 

  23. Delavari, H., Baleanu, D., Sadati, J.: Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 67, 2433–2439 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems and Application Multiconference, IMACS, IEEE-SMC, Lille, France, vol. 2, pp. 963–968. (1996). Springer, Berlin

    Google Scholar 

  25. Audounet, J., Matignon, D., Montseny, G.: Semi-linear diffusive representations for non-linear fractional differential systems. In: Isidori, A., Lamnabhi-Lagarrigue, F., Respondek, W. (eds.) Nonlinear Control in the Year 2000 (CNRS-NCN) vol. 1, pp. 78–82. Springer, Berlin (2000)

    Google Scholar 

Download references

Acknowledgements

The present job was financially supported by the Key Program of Shanghai Municipal Education Commission (No. 12ZZ084) and the Shanghai Leading Academic Discipline Project (No. S30104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changpin Li.

Additional information

Dedicated to Professor Ravi P. Agarwal on the Occasion of his 65th Birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Ma, Y. Fractional dynamical system and its linearization theorem. Nonlinear Dyn 71, 621–633 (2013). https://doi.org/10.1007/s11071-012-0601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0601-1

Keywords

Navigation