Skip to main content

Advertisement

Log in

Identification of nonlinear Hammerstein system using mixed integer-real coded particle swarm optimization: application to the electric daily peak-load forecasting

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the modeling of a class of dynamic systems using nonlinear Hammerstein (NLH) model composed of a memory-less polynomial block cascaded to an autoregressive with exogenous input (ARX) time-series block. The model thus defined is known as NLHARX. Both the integer orders and the real coefficients of the model are identified simultaneously in a unified framework using a new algorithm based on a mixed coded integer-real particle swarm optimization. Unlike classical identification methods which assume the orders to be known in advance, the proposed approach is new since it estimates both the real and integer design parameters while minimizing the error between the outputs of the system and the model. The usefulness and the effectiveness of the proposed approach have been demonstrated through extensive simulations. Two illustrative examples are included in this paper: an empirical example and an application to the forecasting of the daily peak-load of Hail region, Saudi Arabia. Future works will be devoted to the identification of more complex dynamic systems, such as Hammerstein–Wiener and the application to the prediction of time-series related to water and energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wills, A., Schon, T.B., Ljung, L., Ninness, B.: Identification of Hammerstein–Wiener models. Automatica 49, 70–81 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Jingzhuo, S., Juanping, Z., Jingtao, H., Meiyu, X., Juwei, Z., Lei, Z.: Identification of ultrasonic motor’s nonlinear Hammerstein model. J. Autom. Electr. Syst. 25, 537–546 (2014)

    Article  Google Scholar 

  3. Wang, D.F., Ren, Y.Y., Liu, C.L., Han, P.: Identification of thermal process using Hammerstein model based on particle swarm optimization algorithm. Lect. Notes Electr. Eng. 238, 1961–1968 (2014)

    Article  Google Scholar 

  4. Jurado, F.: Modelling micro-turbines using Hammerstein models. Int. J. Energy Res. 29, 841–855 (2005)

    Article  Google Scholar 

  5. Butcher, M., Giustiniani, A., Masi, A.: On the identification of Hammerstein systems in the presence of an input hysteretic nonlinearity with nonclonal memory: piezoelectric actuators—an experimental case study. Physica B 486, 101–105 (2016)

    Article  Google Scholar 

  6. Ding, F., Chen, T.: Identification of Hammerstein nonlinear ARMAX systems. Automatica 41, 1479–1489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Xu, B.-C., Zhang, Y.-D.: New identification method for Hammerstein models based on approximate least absolute deviation. Int. J. Syst. Sci. 47(9), 2201–2213 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  8. Maatallah, O.A., Achuthan, A., Janoyan, K., Marzocca, P.: Recursive wind speed forecasting based on Hammerstein auto-regressive model. Appl. Energy 145, 191–197 (2015)

    Article  Google Scholar 

  9. Zhao, W.X., Chen, H.F., Zhou, T.: New results on recursive identification on NARX systems. Int. J. Adapt. Control Sig. Process. 25, 855–875 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ma, L., Liu, X.: Recursive maximum likelihood method for the identification of Hammerstein ARMAX system. Appl. Math. Model. 40, 6523–6535 (2016)

    Article  MathSciNet  Google Scholar 

  11. Chaoui, F.Z., Giri, F., Rochdi, Y., Haloua, M., Naitali, A.: System identification based on Hammerstein model. Int. J. Control 78(6), 430–442 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ding, F., Shi, Y., Chen, T.: Gradient-based identification methods for Hammerstein nonlinear ARMAX models. Nonlinear Dyn. 45, 31–43 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, J., Wang, X.: Identification of Hammerstein systems with continuous nonlinearity. Inf. Process. Lett. 115, 822–827 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Al-Duwaish, H.N., Azhar Ali, S.S.: Hammerstein model identification using radial basis functions neural networks. In: ICANN, pp. 951–956 (2001)

  15. Cui, M., Liu, H., Li, Z., Tang, Y., Guan, X.: Identification of Hammerstein model using functional link artificail neural network. Neurocomputing 142, 419–428 (2014)

    Article  Google Scholar 

  16. Pal, P.S., Kar, R., Mandal, D., Ghoshal, S.P.: Identification of NARMAX Hammerstein models with performance assessment using brain storm optimization algorithm. Int. J. Adapt. Control Sig. Process. 30, 1043–1070 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang, D.L., Tang, Y.G., Ma, J.H., Guan, X.P.: Identification of Wiener model with discontinuous nonlinearities using differential evolution. Int. J. Control Autom. Syst. 11(3), 511–518 (2013)

    Article  Google Scholar 

  18. Naitali, A., Giri, F.: Wiener–Hammerstein system identification—an evolutionary approach. Int. J. Syst. Sci. 47(1), 45–61 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tang, Y., Qiao, L., Guan, X.: Identification of Wiener model using step signals and particle swarm optimization. Expert Syst. Appl. 37, 3398–3404 (2010)

    Article  Google Scholar 

  20. Fan, H., Lin, W.: Parameter estimation of the MISO nonlinear system based on improved particle swarm optimization. Appl. Mech. Mater. 130–134, 2563–2567 (2012)

    Google Scholar 

  21. Ma, J., Zhao, L., Han, Z., Tang, Y.: Identification of Wiener model using least squares support vector machine optimized by adaptive particle swarm optimization. J. Control Autom. Electr. Syst. 26, 609–615 (2015)

    Article  Google Scholar 

  22. Nanda, S.J., Panda, G., Majhi, B.: Improved identification of Hammerstein plants using new CPSO and IPSO algorithms. Expert Syst. Appl. 37, 6818–6831 (2010)

    Article  Google Scholar 

  23. Hachino, T., Yamakawa, S.: Non-parametric identification of continuous-time Hammerstein systems using Gaussian process model and particle swarm optimization. Artif. Life Robot. 17, 35–40 (2012)

    Article  Google Scholar 

  24. Sun, J., Liu, X.: A novel APSO-aided maximum likelihood identification method for Hammerstein systems. Nonlinear Dyn. 73, 449–462 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Al-Duwaish, H.N.: Identification of Hammerstein models with known nonlinearity structure using particle swarm optimization. Arab. J. Sci. Eng. 36, 1269–1276 (2011)

    Article  Google Scholar 

  26. Zhang, Q., Wang, Q., Li, G.: Nonlinear modeling and predictive functional control of Hammerstein system with application to the turntable servo system. Mech. Syst. Sig. Process. 72–73, 383–394 (2016)

    Article  Google Scholar 

  27. Wang, J., Zhang, Q.: Detection of asymmetric control valve stiction from oscillatory data using an extended Hammerstein system identification method. J. Process Control 24, 1–12 (2014)

    Article  Google Scholar 

  28. Fragkoulis, D., Roux, G., Dahhou, B.: Detection, isolation and identification of multiple actuator and sensor faults in nonlinear dynamic systems: application to a waste water treatment process. Appl. Math. Model. 35, 522–543 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85, 317–325 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  31. del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.-C., Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)

    Article  Google Scholar 

  32. Sivanagaraju, S., Rao, J.V., Raju, P.S.: Discrete particle swarm optimization to network reconfiguration for loss reduction and load balancing. Electr. Power Compon. Syst. 36, 513–524 (2008)

    Article  Google Scholar 

  33. Uilhoorn, F.E.: Comparison of two non-convex mixed-integer nonlinear programming algorithms applied to autoregressive moving average model structure and parameter estimation. Eng. Optim. 48(10), 1693–1706 (2016)

    Article  MathSciNet  Google Scholar 

  34. Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization problems through particle swarm optimization. Nat. Comput. 1, 281–288 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. El-Telbany, M., El-Karmi, F.: Short-term forecasting of Jordanian electricity demand using particle swarm optimization. Electr. Power Syst. Res. 78, 425–433 (2008)

    Article  Google Scholar 

  36. Liu, G., Guo, W., Niu, Y., Chen, G., Huang, X.: A PSO-based timing-driven Octilinear Steiner tree algorithm for VLSI routing considering ben reduction. Soft. Comput. 19, 1153–1169 (2015)

    Article  Google Scholar 

  37. Baguda, Y.S., Fisal, N., Rashid, R.A., Yusof, S.K., Syed, S.H., Shuaibi, D.S.: In: Abd Manaf, A., et al. (eds.) Low Complexity PSO-Based Multi-objective Algorithm for Delay-Constraint Applications, pp. 274–283. Springer, Berlin (2011)

Download references

Acknowledgements

This research Project has been supported by the Grant of the Deanship of Scientific Research of Hail University, Saudi Arabia, under the No. 150460. I would like to acknowledge the University for its Support. I am also indebted to Engineers Majid AlShammari, Habib Fathalli and Yusuf AlShammari (from Hail II power plant, Saudi Electricity Company) for providing the data of load and peak-load.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahbi Boubaker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boubaker, S. Identification of nonlinear Hammerstein system using mixed integer-real coded particle swarm optimization: application to the electric daily peak-load forecasting. Nonlinear Dyn 90, 797–814 (2017). https://doi.org/10.1007/s11071-017-3693-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3693-9

Keywords

Navigation