Skip to main content
Log in

Reduced-order models for the dynamics of superparamagnetic nanoparticles interacting with cargoes transported by kinesins

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles are widely used for different applications in biological systems. Multiphysics models that capture the dynamics of both magnetic nanoparticles and biological phenomena are computationally expensive. We develop a novel reduced-order model (ROM) for the dynamics of magnetic nanoparticles to study the interaction of superparamagnetic nanoparticles with cellular nanotransport upon delivery of these particles into cells. Superparamagnetic nanoparticles can form chain-like structures in the presence of external magnetic fields. Such chains influence the nanotransport inside cells. We model the viscous and magnetic forces on the nanoparticles, and the formation of aggregates/structures composed of nanoparticles to construct our novel ROM. Further, we model the stochastic nanotransport coupled with the dynamics of the magnetic nanoparticles. We use our novel ROM to characterize the stochastic motion of a kinesin in the presence of magnetic nanoparticles by determining the force acting on cargoes for different aggregate shapes and sizes (without having to solve the full-order dynamics every time). The ROM coupled with kinesin model allows the quantification of the decreases in processivity of kinesin and in its average velocity under external loads caused by chains of superparamagnetic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Neuberger, T., Schöpf, B., Hofmann, H., Hofmann, M., von Rechenberg, B.: Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–96 (2005). doi:10.1016/j.jmmm.2005.01.064

    Article  Google Scholar 

  2. Thorek, D.L.J., Chen, A.K., Czupryna, J., Tsourkas, A.: Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng. 34, 23–38 (2006). doi:10.1007/s10439-005-9002-7

    Article  Google Scholar 

  3. Laurent, S., Dutz, S., Häfeli, U.O., Mahmoudi, M.: Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166, 8–23 (2011). doi:10.1016/j.cis.2011.04.003

    Article  Google Scholar 

  4. Colombo, M., Carregal-Romero, S., Casula, M.F., Gutiérrez, L., Morales, M.P., Böhm, I.B., et al.: Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41, 4306–34 (2012). doi:10.1039/c2cs15337h

    Article  Google Scholar 

  5. Satoh, A.: Introduction to Practice of Molecular Simulation: Molecular Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann, Dissipative Particle Dynamics. Elsevier, Amsterdam (2011)

    Google Scholar 

  6. Nayfeh, A.H.: Reduced-order models of weakly nonlinear spatially continuous systems. Nonlinear Dyn. 16, 105–25 (1998). doi:10.1023/A:1008281121523

    Article  MathSciNet  MATH  Google Scholar 

  7. Lucia, D.J., Beran, P.S., Silva, W.A.: Reduced-order modeling: new approaches for computational physics. Prog. Aerosp. Sci. 40, 51–117 (2004). doi:10.1016/j.paerosci.2003.12.001

    Article  Google Scholar 

  8. Masri, S.F., Caffrey, J.P., Caughey, T.K., Smyth, A.W., Chassiakos, A.G.: A general data-based approach for developing reduced-order models of nonlinear MDOF systems. Nonlinear Dyn. 39, 95–112 (2005). doi:10.1007/s11071-005-1916-y

    Article  MATH  Google Scholar 

  9. Boukouvala, F., Gao, Y., Muzzio, F., Ierapetritou, M.G.: Reduced-order discrete element method modeling. Chem. Eng. Sci. 95, 12–26 (2013). doi:10.1016/j.ces.2013.01.053

    Article  Google Scholar 

  10. Rudenko, O.V., Hedberg, C.M.: Nonlinear dynamics of grains in a liquid-saturated soil. Nonlinear Dyn. 35, 187–200 (2004)

    Article  MATH  Google Scholar 

  11. Shang, L., Nienhaus, K., Nienhaus, G.U.: Engineered nanoparticles interacting with cells: size matters. J. Nanobiotechnol. 12, 5 (2014). doi:10.1186/1477-3155-12-5

    Article  Google Scholar 

  12. Kettler, K., Veltman, K., van de Meent, D., van Wezel, A., Hendriks, A.J.: Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ. Toxicol. Chem. 33, 481–92 (2014). doi:10.1002/etc.2470

    Article  Google Scholar 

  13. Adjei, I.M., Sharma, B., Labhasetwar, V.: Nanoparticles: cellular uptake and cytotoxicity. Adv. Exp. Med. Biol. 811, 73–91 (2014). doi:10.1007/978-94-017-8739-0_5

    Article  Google Scholar 

  14. Ong, B.H., Devaraj, N.K.: Superparamagnetic Nanoparticles, vol. 5. Berlin, Heidelberg: Springer Berlin Heidelberg; pp. 375–393. doi:10.1007/8611_2010_24 (2010)

  15. Rouhana, L.L., Schlenoff, J.B.: Aggregation resistant zwitterated superparamagnetic nanoparticles. J. Nanopart. Res. 14, 835 (2012). doi:10.1007/s11051-012-0835-3

    Article  Google Scholar 

  16. Nakata, K., Hu, Y., Uzun, O., Bakr, O., Stellacci, F.: Chains of superparamagnetic nanoparticles. Adv. Mater. 20, 4294–9 (2008). doi:10.1002/adma.200800022

    Article  Google Scholar 

  17. Peng, X., Min, Y., Ma, T., Luo, W., Yan, M.: Two-dimensional Monte Carlo simulations of structures of a suspension comprised of magnetic and nonmagnetic particles in uniform magnetic fields. J. Magn. Magn. Mater. 321, 1221–6 (2009). doi:10.1016/j.jmmm.2008.11.011

    Article  Google Scholar 

  18. Hirokawa, N., Noda, Y.: Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol. Rev. 88, 1089–118 (2008). doi:10.1152/physrev.00023.2007

    Article  Google Scholar 

  19. Vale, R., Reese, T., Sheetz, M.: Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985). doi:10.1016/S0092-8674(85)80099-4

    Article  Google Scholar 

  20. Brady, S.T.: A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73–5 (1985). doi:10.1038/317073a0

    Article  Google Scholar 

  21. Hoyt, M.A.: Cellular roles of kinesin and related proteins. Curr. Opin. Cell Biol. 6, 63–8 (1994). doi:10.1016/0955-0674(94)90117-1

    Article  Google Scholar 

  22. Fazal, F.M., Block, S.M.: Optical tweezers study life under tension. Nat. Photonics 5, 318–21 (2011). doi:10.1038/nphoton.2011.100

    Article  Google Scholar 

  23. Block, S.M., Goldstein, L.S.B., Schnapp, B.J.: Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–52 (1990). doi:10.1038/348348a0

    Article  Google Scholar 

  24. Svoboda, K., Schmidt, C.F., Schnapp, B.J., Block, S.M.: Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–7 (1993). doi:10.1038/365721a0

    Article  Google Scholar 

  25. Cai, D., Verhey, K.J., Meyhöfer, E.: Tracking single kinesin molecules in the cytoplasm of mammalian cells. Biophys. J. 92, 4137–44 (2007). doi:10.1529/biophysj.106.100206

    Article  Google Scholar 

  26. Vale, R.D., Funatsu, T., Pierce, D.W., Romberg, L., Harada, Y., Yanagida, T.: Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–3 (1996). doi:10.1038/380451a0

    Article  Google Scholar 

  27. Nam, W., Epureanu, B.I.: Highly loaded behavior of kinesins increases the robustness of transport under high resisting loads. PLoS Comput. Biol. 11, e1003981 (2015). doi:10.1371/journal.pcbi.1003981

    Article  Google Scholar 

  28. Hendricks, A.G., Epureanu, B.I., Meyhöfer, E.: Mechanistic mathematical model of kinesin under time and space fluctuating loads. Nonlinear Dyn. 53, 303–20 (2008). doi:10.1007/s11071-007-9315-1

    Article  MATH  Google Scholar 

  29. Visscher, K., Schnitzer, M.J., Block, S.M.: Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–9 (1999). doi:10.1038/22146

    Article  Google Scholar 

  30. Kojima, H., Muto, E., Higuchi, H., Yanagida, T.: Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2012–22 (1997). doi:10.1016/S0006-3495(97)78231-6

    Article  Google Scholar 

  31. Fallesen, T.L., Macosko, J.C., Holzwarth, G.: Force-velocity relationship for multiple kinesin motors pulling a magnetic bead. Eur. Biophys. J. 40, 1071–9 (2011). doi:10.1007/s00249-011-0724-1

    Article  Google Scholar 

  32. Wei, J., Kawaguchi, Y., Yu, B., Li, F., Zhang, C.: Microstructures and rheology of micellar surfactant solution by Brownian dynamics simulation. Nonlinear Dyn. 61, 503–15 (2010). doi:10.1007/s11071-010-9667-9

    Article  MATH  Google Scholar 

  33. Satoh, A.: Practice of dissipative particle dynamics simulations. In: Satoh, A. (ed.) Introduction to Practice of Molecular Simulation, pp. 187–218. Elsevier, London (2011). doi:10.1016/B978-0-12-385148-2.00006-9

    Chapter  Google Scholar 

  34. Satoh, A., Chantrell, R.W., Kamiyama, S.-I., Coverdale, G.N.: Two-dimensional Monte Carlo simulations to capture thick chainlike clusters of ferromagnetic particles in colloidal dispersions. J. Colloid Interface Sci. 178, 620–7 (1996). doi:10.1006/jcis.1996.0159

    Article  Google Scholar 

  35. Aoshima, M., Satoh, A.: Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of polydisperse ferromagnetic particles in an applied magnetic field. J. Colloid Interface Sci. 288, 475–88 (2005). doi:10.1016/j.jcis.2005.02.093

    Article  Google Scholar 

  36. Zhu, Y., Umehara, N., Ido, Y., Sato, A.: Computer simulation of structures and distributions of particles in MAGIC fluid. J. Magn. Magn. Mater. 302, 96–104 (2006). doi:10.1016/j.jmmm.2005.08.015

    Article  Google Scholar 

  37. Nam, W., Epureanu, B.I.: The effects of viscoelastic fluid on kinesin transport. J. Phys. Condens. Matter. 24, 375103 (2012). doi:10.1088/0953-8984/24/37/375103

    Article  Google Scholar 

  38. Nam, W., Epureanu, B.I., Epurenau, B.I.: Metrics for characterizing collective transport by multiple dimeric kinesins. Phys. Rev. E Stat. Nonlinear Soft Matter. Phys. 86, 51916 (2012). doi:10.1103/PhysRevE.86.051916

    Article  Google Scholar 

  39. Kou, S.C., Cherayil, B.J., Min, W., English, B.P., Xie, X.S.: Single-molecule Michaelis–Menten equations. J. Phys. Chem. B 109, 19068–81 (2005). doi:10.1021/jp051490q

    Article  Google Scholar 

  40. Carter, N.J., Cross, R.A.: Mechanics of the kinesin step. Nature 435, 308–12 (2005). doi:10.1038/nature03528

    Article  Google Scholar 

  41. Luby-Phelps, K.: Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 192, 189–221 (1999). doi:10.1016/S0074-7696(08)60527-6

    Article  Google Scholar 

  42. Kühn, T., Ihalainen, T.O., Hyväluoma, J., Dross, N., Willman, S.F., Langowski, J., et al.: Protein diffusion in mammalian cell cytoplasm. PLoS One 6, e22962 (2011). doi:10.1371/journal.pone.0022962

    Article  Google Scholar 

  43. Svoboda, K., Block, S.M.: Force and velocity measured for single kinesin molecules. Cell 77, 773–84 (1994). doi:10.1016/0092-8674(94)90060-4

    Article  Google Scholar 

  44. Nishiyama, M., Higuchi, H., Yanagida, T.: Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–7 (2002). doi:10.1038/ncb857

    Article  Google Scholar 

  45. Schnitzer, M.J., Visscher, K., Block, S.M.: Force production by single kinesin motors. Nat. Cell Biol. 2, 718–23 (2000). doi:10.1038/35036345

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Division of Civil, Mechanical and Manufacturing Innovation (Grant No. 1161874).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan I. Epureanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzakhalili, E., Nam, W. & Epureanu, B.I. Reduced-order models for the dynamics of superparamagnetic nanoparticles interacting with cargoes transported by kinesins. Nonlinear Dyn 90, 425–442 (2017). https://doi.org/10.1007/s11071-017-3673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3673-0

Keywords

Navigation