Skip to main content
Log in

Study about the nanoparticle agglomeration in a magnetic nanofluid by the Langevin dynamics simulation model using an effective Verlet-type algorithm

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper presents a modelling study about the nanoparticle agglomeration in magnetic nanofluids. The colloidal magnetic nanoparticles size distribution is subjected to simultaneous translation and rotation movements under the action of conservative and dissipative forces, with their respective moments. In order to obtain the numerical solution of the coupled equations of motion, we use a Langevin dynamics stochastic method based on an effective Verlet-type algorithm. The presented model is based on an easy-to-implement integrator. We apply a number of analytical techniques to assess the performance of the method. The model has been tested on a magnetite nanoparticle-based nanofluid. Finally, the paper presents a number of structures obtained in various physical conditions, discussing the retrieved results of modelling and simulation. In weak external magnetic field, the nanoparticles form arrangements like linear chains or dense globes and rings, with magnetic moments rotating in both directions (both clockwise and counterclockwise). These arrangements, in vortex and toroidal states, are reported in actual scientific literature and open new perspectives for understanding the behaviour of nanofluids, with applications in engineering and medicine. Chains are predominant in high external magnetic, with local magnetic moments mainly orientated mainly along the direction of the applied field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

m i (kg):

The ith nanoparticle mass

\(\vec{v}_{i}\) (m/s):

The ith nanoparticle linear speed

\(\vec{f}_{i}\) (N):

The resultant of the conservative forces acting on the ith nanoparticle

\(\alpha_{{i,{\text{tr}}}}\) (N s)/m):

The translational friction coefficients of the ith nanoparticle

\(\alpha_{{i,{\text{rot}}}}\)(N s m):

The rotational friction coefficients of the ith nanoparticle

η (Pa·s):

The dynamic viscosity coefficient

r i (m):

The ith nanoparticle radius

\(\beta_{{i,{\text{tr}}}} (t)\) (N):

The random Brownian force of the ith nanoparticle

\(\beta_{{i,{\text{rot}}}} (t)\) (N m):

The random Brownian torque of the ith nanoparticle

I i (kg m2):

The moment of inertia of the ith nanoparticle

\(\vec{\omega }_{i}\) (rad/s):

The angular speed of the ith nanoparticle

\(\vec{T}_{i,c}\) (N m):

The resultant of the conservative torques acting on the ith nanoparticle

δ(t):

The Dirac delta function

\(\hat{n}_{ij}\) :

The versor of the direction connecting the ith and jth particles

D ij (m):

The distance between the centres of the ith and jth nanoparticles

\(\vec{D}_{ij}\) (m):

The vector of the direction connecting the centres of the ith and jth nanoparticles

\(s_{ij}\) (m):

The surface-to-surface separation between the ith and jth nanoparticles

A eff (J):

The Hamaker effective constant for iron-oxide nanoparticles in water

\(\vec{F}_{{{\text{el}},{\text{DL}},ij}}\) (N):

The electrostatic force acting between ith and jth nanoparticle, in a double layer system

\(V_{{{\text{el}},{\text{DL}},ij}}\) (J):

The electrostatic potential energy acting between ith and jth nanoparticle, in a double layer system

\(\varPhi_{0i}\) (C/m):

The surface potential of the ith nanoparticle at infinite separation

κ (m−1):

The thickness of the screening ionic layer

e (C):

Electron charge

n 0 (ions/m3):

The concentration of ions in bulk solution

z i :

The valence of the ith ions from electrolyte

ε (F/m):

The electrical permittivity of the solvent

k B (J/K):

The Boltzmann constant

T (K):

The absolute temperature

c i (ions/m3):

The concentration of the ith ion species in bulk solution

q (C):

The effective charge of the particles

\(V_{\text{steric}}^{\text{ES}} (s_{ij} ,r_{i} )\) (J):

The steric potential between two equal spheres

\(V_{\text{steric}}^{\text{ES}} (s_{ij} ,r_{i} ,r_{j} )\) (J):

The steric potential between two unequal spheres

\(\vec{F}_{{{\text{steric}},ij}}\) (N):

The steric force

\(d_{i}\) (m):

The diameter of the ith nanoparticle

\(\xi\) (m−2):

The surface density of the polymers

M s (A/m):

The spontaneous magnetization

V i (m3):

The particle volume

\(\hat{\mu }_{i}\) :

The unit vector of the magnetic moments

\(\vec{\mu }_{i}\)(A m2):

The magnetic moment of the i nanoparticle

\(E_{\text{vdw}}\) (J):

The van der Waals’ interaction energy between spherical particles i and j

\(\vec{F}_{\text{vdw}}\) (N):

The van der Waals’ force

\(\vec{F}_{{{\text{md}},ij}}\) (N):

The dipolar magnetic force exerted between the magnetic moments of the nanoparticles i and j

\(\vec{\tau }_{i}\) (N m):

The magnetic torque acting on an ith nanoparticle

μ0 :

The vacuum magnetic permeability

\(\vec{H}_{i}\) :

The local magnetic field on each nanoparticle

\(\vec{H}_{ext}\) (A/m):

The external magnetic field applied

\(\vec{H}_{\text{id}}\) (A/m):

The internal dipolar magnetic field

t (s):

Time

dt (s):

Time integration step

\(\bar{v}^{2}\) (m2/s2):

The mean-square velocity

\(\phi_{i}\) (rad):

Rotation angle

\(\bar{\omega }^{2}\) (rad2/s2):

The mean square of the angular velocities

References

  • Alfimov AV, Aryslanova EM, Chivilikhin SA (2014) An analytical method for determining the interaction energy between multiple identical spherical colloidal zinc oxide nanoparticles. J Phys Conf Ser 541:012063

    Article  Google Scholar 

  • Babick F (2016) Suspensions of colloidal particles and aggregates. Springer, Heidelberg

    Book  Google Scholar 

  • Cacciola M, Osaci M (2016) Studies about the influence of self-organization of colloidal magnetic nanoparticles on the magnetic néel relaxation time. Colloid J 78(4):448–458

    Article  Google Scholar 

  • Drikakis D, Frank M (2015) Advances and challenges in computational research of micro- and nanoflows. Microfluid Nanofluid 19(5):1019–1033

    Article  Google Scholar 

  • Evans DJ, Searles DJ, Williams SR (2016) Fundamentals of classical statistical thermodynamics: dissipation, relaxation, and fluctuation theorems, Wiley-VCH, Berlin

    Book  Google Scholar 

  • Faure B, Salazar-Alvarez G, Bergström L (2011) Hamaker constants of iron oxide nanoparticles. Langmuir 27(14):8659–8664

    Article  Google Scholar 

  • Gillespie D (2015) A review of steric interactions of ions: why some theories succeed and others fail to account for ion size. Microfluid Nanofluid 18(5):717–738

    Article  Google Scholar 

  • Grønbech-Jensena N, Faragoa O (2013) A simple and effective Verlet-type algorithm for simulating Langevin dynamics. Mol Phys 111(8):983–991

    Article  Google Scholar 

  • Haase C, Nowak U (2012) Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticles ensembles. Phys Rev B 85(4):045435

    Article  Google Scholar 

  • Hatch HW, Yang SY, Mittal J, Shen VK (2016) Self-assembly of trimer colloids: effect of shape and interaction range. Soft Matter 12:4170–4179

    Article  Google Scholar 

  • Holland DM, Lockerby DA, Borg MK, Nicholls WD, Reese JM (2015) Molecular dynamics pre-simulations for nanoscale computational fluid dynamics. Microfluid Nanofluid 18(3):461–474

    Article  Google Scholar 

  • Horinek D (2014) DLVO Theory. Encyclopedia of applied electrochemistry. Springer, New York, pp 343–346

    Chapter  Google Scholar 

  • Hu C, Bai M, Lv J, Wang P, Zhang L, Li X (2014) Molecular dynamics simulation of nanofluid’s flow behaviors in the near-wall model and main flow model. Microfluid Nanofluid 17(3):581–589

    Article  Google Scholar 

  • Iyengar SJ, Joy M, Maity T, Chakraborty J, Kotnala RK, Ghosh S (2016) Colloidal properties of water dispersible magnetite nanoparticles by photon correlation spectroscopy. RSC Adv 6:14393–14402

    Article  Google Scholar 

  • Lebovka NI (2014) Aggregation of charged colloidal particles. Adv Polym Sci 255:57–96

    Article  Google Scholar 

  • Liang S, Zeng X, Hong Y (2016) Lyapunov stability and generalized invariance principle for nonconvex differential inclusions. Control Theory Tech 14(2):140–150

    Article  MathSciNet  MATH  Google Scholar 

  • Lim EWC, Feng R (2012) Agglomeration of magnetic nanoparticles. J Chem Phys 136:124109

    Article  Google Scholar 

  • Lin S, Wiesner MR (2012) Theoretical investigation on the steric interaction in colloidal deposition. Langmuir 28(43):15233–15245

    Article  Google Scholar 

  • Liu J, Liang C, Zhu X, Lin Y, Zhang H, Wu S (2016) Understanding the solvent molecules induced spontaneous growth of uncapped tellurium nanoparticles. Sci Rep 6:32631

    Article  Google Scholar 

  • Loya A, Stair JL, Ren G (2014) The approach of using molecular dynamics for nanofluid simulations. Int J Eng Res Technol 3(5):1236–1247

    Google Scholar 

  • Margabandhul M, Sendhilnathan S, Senthilkumar S, Hirthna K (2016) Experimental investigation on heat transfer rate of Co–Mn ferrofluids in external magnetic field. Mater Sci Pol 34(2):427–436

    Google Scholar 

  • Michel R, Gradzielski M (2012) Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications. Int J Mol Sci 13:11610–11642

    Article  Google Scholar 

  • Mikelonis AM, Youn S, Lawler DF (2016) DLVO Approximation methods for predicting the attachment of silver nanoparticles to ceramic membranes. Langmuir 32(7):1723–1731

    Article  Google Scholar 

  • Oyegbile B, Ay P, Narra S (2016) Flocculation kinetics and hydrodynamic interactions in natural and engineered flow systems: a review. Environ Eng Res 21(1):1–14

    Article  Google Scholar 

  • Papasimakis N, Fedotov VA, Savinov V, Raybould TA, Zheludev NI (2016) Electromagnetic toroidal excitations in matter and free space. Nat Mater 15:263–271

    Article  Google Scholar 

  • Park JA, Kima SB (2015) DLVO and XDLVO calculations for bacteriophage MS2 adhesion to iron oxide particles. J Contam Hydrol 181:131–140

    Article  Google Scholar 

  • Patra CN (2016) A three-component model on the structure of colloidal solution with size-asymmetric electrolytes. Mol Phys 114(16–17):2341–2350

    Article  Google Scholar 

  • Piet DL, Straube AV, Snezhko A, Aronson IS (2013) Model of dynamic self-assembly in ferromagnetic suspensions at liquid interfaces. Phys Rev E 88:033024

    Article  Google Scholar 

  • Pinilla-Cienfuegos E, Mañas-Valero S, Forment-Aliaga A, Coronado E (2016) Switching the magnetic vortex core in a single nanoparticle. ACS Nano 10(2):1764–1770

    Article  Google Scholar 

  • Polyakov AY, Lyutyy TV, Denisov S, Reva VV, Hånggi P (2013) Large-scale ferrofluid simulations on graphics processing units. Comput Phys Commun 184:1483–1489

    Article  Google Scholar 

  • Popa GN, Dinis CM, Deaconu SI, Popa I (2016) Modelling of some parameters from thermoelectric power plants, International Conferences on Applied Science, ICAS 2015. IOP Conf Ser Mater Sci Eng 106:012011

    Article  Google Scholar 

  • Pribram-Jones A, Grabowski PE, Burke K (2016) Thermal density functional theory: time-dependent linear response and approximate functionals from the fluctuation-dissipation theorem. Phys Rev Lett 116:233001

    Article  Google Scholar 

  • Reeves DB, Weaver JB (2012) Simulations of magnetic nanoparticle Brownian motion. J Appl Phys 112:124311

    Article  Google Scholar 

  • Riedinger A, Zhang F, Dommershausen F, Röcker C, Brandholt S, Nienhaus GU, Koertn U, Parak WJ (2010) Ratiometric optical sensing of chloride ions with organic fluorophore–gold nanoparticle hybrids: a systematic study of distance dependency and the influence of surface charge. Small 6:2590–2597

    Article  Google Scholar 

  • Rob R, Panoiu C, Panoiu M (2016) Study regarding the non-sinusoidal regime imposed by nonlinear loads. IOP Conf Ser Mater Sci Eng 106:012023

    Article  Google Scholar 

  • Rokidi SG, Koutsoukos PG, Perez LA, Amjad Z, Zuhl RW (2016) Iron oxide colloidal suspension stabilization by polymeric dispersants. In: NACE international corrosion conference and expo, Milano, Italy, 2016

  • Runkana V, Somasundaran P, Kapur PC (2006) A population balance model for flocculation of colloidal suspensions bypolymer bridging. Chem Eng Sci 61:182–191

    Article  Google Scholar 

  • Scherer C (2004) Stochastic molecular dynamics of colloidal particles. Braz J Phys 34(2):442–447

    Article  Google Scholar 

  • Scherer C, Figueiredo Neto AM (2005) Ferrofluids: properties and applications. Braz J Phys 35(3A):718–727

    Article  Google Scholar 

  • Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia application. J Magn Magn Mater 324(6):903–915

    Article  Google Scholar 

  • Sreekumari A, Ilg P (2013) Slow relaxation in structure forming ferrofluids. Phys Rev E 88:042315

    Article  Google Scholar 

  • Stopper D, Roth R, Hansen-Goos H (2016) Structural relaxation and diffusion in a model colloid-polymer mixture: dynamical density functional theory and simulation. J Phys Condens Matter 28(45):455101

    Article  Google Scholar 

  • Tanygi BM, Shulyma SI, Kovalenko VF, Petrychuk MV (2015) Ferrofluid nucleus phase transitions in an external uniform magnetic field. Chin Phys B 24(10):104702

    Article  Google Scholar 

  • Tasios N, Edison JR, van Roij R, Evans R, Dijkstra M (2016) Critical Casimir interactions and colloidal self-assembly in near-critical solvents. J Chem Phys 145:084902

    Article  Google Scholar 

  • Usanov DA, Postel’ga AE, Bochkova TS, Gavrilin VN (2016) Dynamics of nanoparticle agglomeration in a magnetic fluid in a varying magnetic field. Tech Phys 61(3):464–466

    Article  Google Scholar 

  • van Gruijthuijsen KM, Rabasa O, Heinen M, Nägele G, Stradner A (2013) Sterically stabilized colloids with tunable repulsions. Langmuir 29(36):11199–11207

    Article  Google Scholar 

  • Villa-Torrealba A, Toro-Mendoza J (2015) Fluctuation-dissipation theorem for Brownian particles with internal degrees of freedom. Fis Acta Cient Venez 66(4):230–235

    Google Scholar 

  • Wang Z, Holm C (2001) Estimate of the cutoff errors in the Ewald summation for dipolar systems. J Chem Phys 115:6277–6798

    Article  Google Scholar 

  • Wiśniewska M, Chibowski S, Urban T, Sternik D, Terpiłowski K (2016) Impact of anionic polyacrylamide on stability and surface properties of the Al2O3–polymer solution system at different temperatures. Colloid Polym Sci 294(9):1511–1517

    Article  Google Scholar 

  • Yao J, Han H, Hou H, Gong E, Yin W (2016) A method of calculating the interaction energy between particles in minerals flotation. Math Probl Eng 2016:1–13

    Google Scholar 

  • Zhang F, Ali Z, Amin F, Feltz A, Oheim M, Parak WJ (2010) Ion and pH sensing with colloidal nanoparticles: influence of surface charge on sensing and colloidal properties. ChemPhys 11:730–735

    Article  Google Scholar 

  • Zhang F, Lees E, Amin F, Rivera GP, Yang F, Mulvaney P, Parak WJ (2011) Polymer-coated nanoparticles: a universal tool for biolabelling experiments. Small 7:3113–3127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Osaci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osaci, M., Cacciola, M. Study about the nanoparticle agglomeration in a magnetic nanofluid by the Langevin dynamics simulation model using an effective Verlet-type algorithm. Microfluid Nanofluid 21, 19 (2017). https://doi.org/10.1007/s10404-017-1856-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1856-0

Keywords

Navigation