Skip to main content
Log in

Microstructures and rheology of micellar surfactant solution by Brownian dynamics simulation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, three-dimensional Brownian dynamics simulation has been conducted for dilute micellar surfactant solution under a steady shear flow. The rodlike micelle in surfactant solution is assumed as a rigid rod made up of lined-up beads. The Lennard–Jones potential and soft-sphere potential are employed and taken as the inter-bead potentials for end–end beads and interior–interior beads, respectively. The motion of the rodlike micelles is determined by solving the translational and rotational equations for each rod under hydrodynamic drag force, Brownian force and inter-rod potential force. Velocity Verlet algorithm has also been exerted in the simulation. The micellar network structure is formed at low shear rates and destroyed by high shear rates. The computed shear viscosities and the first normal stress coefficient represent shear thinning characteristics. The paper reveals the relation between rheology and microstructure of surfactant solution at different shear rates. The effect of surfactant solution concentration rested on the micellar structures and rheological properties has also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mysels, K.J.: Flow of Thickened Fluids. U.S. Patent 2,492,173 (1949)

  2. White, A.: Flow characteristics of complex soap systems. Nature 214, 585–586 (1967)

    Article  Google Scholar 

  3. Gyr, A., Bewersdorff, H.W.: Drag Reduction of Turbulent Flows by Additives. Kluwer, Dordrecht (1967)

    Google Scholar 

  4. Lu, B., Li, X., Zakin, J.L., Talmon, Y.: A non-viscoelastic drag-reducing cationic surfactant system. J. Non-Newton. Fluid Mech. 71, 59–72 (1997)

    Article  Google Scholar 

  5. Debye, P., Anacker, E.W.: Micelle shape from dissymmetry measurements. J. Phys. Colloid Chem. 55, 644–655 (1951)

    Article  Google Scholar 

  6. Porte, G., Appell, J., Poggi, Y.: Experimental investigations on the flexibility of elongated cetylpyridinium bromide micelles. J. Phys. Chem. 84, 3105–3110 (1980)

    Article  Google Scholar 

  7. Young, C.Y., Missel, P.J., Mazer, N.A., Benedec, G.B., Carey, M.C.: Deduction of micellar shape from angular dissymmetry measurements of light scattered from aqueous sodium dodecyl sulfate solutions at high sodium chloride concentrations. J. Phys. Chem. 82, 1375–1378 (1978)

    Article  Google Scholar 

  8. Ikeda, S., Hayashi, S., Imae, T.: Rodlike micelles of sodium dodecyl sulfate in concentrated sodium halide solutions. J. Phys. Chem. 85, 106–112 (1981)

    Article  Google Scholar 

  9. Linder, P., Bewersdoff, H.W., Heen, R., Sittart, P., Thiel, H., Langowski, J., Oberthur, R.: Drag-reducing surfactant solutions in laminar and turbulent flow investigated by small-angle neutron scattering and light scattering. Prog. Colloid Polym. Sci. 81, 107–112 (1990)

    Article  Google Scholar 

  10. Olsson, U., Soderman, O., Guering, P.: Characterization of micellar aggregates in viscoelastic surfactant solutions: A nuclear magnetic resonance and light scattering study. J. Phys. Chem. 90, 5223–5232 (1986)

    Article  Google Scholar 

  11. Clausen, T.M., Vinson, P.K., Minter, J.R., Davis, H.T., Talmon, Y., Miller, W.G.: Viscoelastic micellar solutions: Microscopy and rheology. J. Phys. Chem. 96, 474–484 (1992)

    Article  Google Scholar 

  12. Stachel, J. (ed.): Einstein’s Miraculous Year: Five Papers that Changed the Face of Physics. Princeton University Press, Princeton (1998)

    MATH  Google Scholar 

  13. Von Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. North-Holland, Amsterdam (2007)

    Google Scholar 

  14. Lowen, H.: Brownian dynamics of hard spherocylinders. Phys. Rev. E 50, 1232–1242 (1994)

    Article  Google Scholar 

  15. Branka, A.C., Heyes, D.M.: Dispersions of rodlike particles in shear flow by Brownian dynamics simulation. J. Chem. Phys. 109, 312–317 (1998)

    Article  Google Scholar 

  16. Mori, N., Kumagae, M., Nakamura, K.: Brownian dynamics simulation for suspensions of oblong-particles under shear flow. Rheol. Acta 37, 151–157 (1998)

    Article  Google Scholar 

  17. Mori, N., Fujioka, H., Semura, R., Nakamura, K.: Brownian dynamics simulation for suspensions of ellipsoids in liquid crystalline phase under simple shear flow. Rheol. Acta 42, 102–109 (2002)

    Article  Google Scholar 

  18. Doi, M., Yanamoto, I., Kano, F.: Monte Carlo simulation of the dynamics of thin rodlike polymers in concentrated solution. J. Phys. Soc. Jpn. 53, 3000–3003 (1984)

    Article  Google Scholar 

  19. Wei, J.J., Kawaguchi, Y., Yu, B., Li, F.C.: Brownian dynamics simulation of microstructure and elongational viscosities of micellar surfactant solution. Chin. Phys. Lett. 25, 4469–4472 (2008)

    Article  Google Scholar 

  20. Padding, J.T., BoeK, E.S., Briels, W.J.: Dynamics and rheology of wormlike micelles emerging from particulate computer simulations. J. Chem. Phys. 129, 074903 (2008)

    Article  Google Scholar 

  21. Liu, T.W.: Flexible polymer chain dynamics and rheological properties in steady flows. J. Chem. Phys. 90, 5826–5842 (1989)

    Article  Google Scholar 

  22. Hida, T., Kuo, H., Potthoff, J., Streit, L.: White Noise: An Infinite Dimensional Calculus. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  23. Bird, R.B., Curtiss, C.F., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, Kinetic Theory. Wiley, New York (1987)

    Google Scholar 

  24. Gunsteren, W.F.V., Berendsen, H.J.C.: Algorithms for Brownian dynamics. Mol. Phys. 45, 637–647 (1982)

    Article  Google Scholar 

  25. Allen, M.P., Tildsley, D.J.: Computer Simulation of Liquids. Oxford Science, Oxford (1987)

    MATH  Google Scholar 

  26. Lu, B.: Characterization of Drag-Reducing Surfactant Systems by Rheology and Flow Birefringence Measurements. Ph.D. Dissertation, The Ohio State University (1997)

  27. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II: Non-Equilibrium Statistical Mechanics. Springer, Berlin (1995)

    Google Scholar 

  28. Hounkonnou, M.N., Pierieoni, C., Ryckaert, J.P.: Liquid chlorine in shear and elongational flows: A nonequilibrium molecular dynamics study. J. Phys. Chem. 97, 9335–9344 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjia Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Kawaguchi, Y., Yu, B. et al. Microstructures and rheology of micellar surfactant solution by Brownian dynamics simulation. Nonlinear Dyn 61, 503–515 (2010). https://doi.org/10.1007/s11071-010-9667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9667-9

Keywords

Navigation