Skip to main content
Log in

Stable fractional Chebyshev differentiation matrix for the numerical solution of multi-order fractional differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents an algorithm to obtain numerically stable differentiation matrices for approximating the left- and right-sided Caputo-fractional derivatives. The proposed differentiation matrices named fractional Chebyshev differentiation matrices are obtained using stable recurrence relations at the Chebyshev–Gauss–Lobatto points. These stable recurrence relations overcome previous limitations of the conventional methods such as the size of fractional differentiation matrices due to the exponential growth of round-off errors. Fractional Chebyshev collocation method as a framework for solving fractional differential equations with multi-order Caputo derivatives is also presented. The numerical stability of spectral methods for linear fractional-order differential equations (FDEs) is studied by using the proposed framework. Furthermore, the proposed fractional Chebyshev differentiation matrices obtain the fractional-order derivative of a function with spectral convergence. Therefore, they can be used in various spectral collocation methods to solve a system of linear or nonlinear multi-ordered FDEs. To illustrate the true advantages of the proposed fractional Chebyshev differentiation matrices, the numerical solutions of a linear FDE with a highly oscillatory solution, a stiff nonlinear FDE, and a fractional chaotic system are given. In the first, second, and forth examples, a comparison is made with the solution obtained by the proposed method and the one obtained by the Adams–Bashforth–Moulton method. It is shown the proposed fractional differentiation matrices are highly efficient in solving all the aforementioned examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dabiri, A., Butcher, E.A., Nazari, M.: Coefficient of restitution in fractional viscoelastic compliant impacts using fractional Chebyshev collocation. J. Sound Vib. 388, 230–244 (2017)

    Article  Google Scholar 

  2. Butcher, E.A., Dabiri, A., Nazari, M.: Stability and Control of Fractional Periodic Time-Delayed Systems, vol. 7. Springer, New York (2017)

    Google Scholar 

  3. Dabiri, A., Nazari, M., Butcher, E.A.: The spectral parameter estimation method for parameter identification of linear fractional order systems. In: American Control Conference (ACC), Boston, MA, 6–8 July 2016

  4. Dabiri, A., Nazari, M., Butcher, E.A.: Optimal fractional state feedback control for linear fractional periodic time-delayed systems. In: American Control Conference (ACC), Boston, MA, 6–8 July 2016

  5. Das, S.: Functional Fractional Calculus. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  6. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach Science Publishers, Philadelphia (1993)

    MATH  Google Scholar 

  7. Sabatier, J., Agrawal, O.P., Machado, J.T.: Advances in Fractional Calculus, vol. 4. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  8. Machado, J.: Analysis and design of fractional-order digital control systems. SAMS 27, 107–122 (1997)

    MATH  Google Scholar 

  9. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. (1978-Present) 30(1), 133–155 (1986)

    Article  MATH  Google Scholar 

  10. Weilbeer, M.: Efficient Numerical Methods for Fractional Differential Equations and Their Analytical Background. Papierflieger (2005)

  11. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional adams method. Numer. Algorithms 36(1), 31–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5(1), 1–6 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Diethelm, K., Freed, A.D.: The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forschung und wissenschaftliches Rechnen 1999, 57–71 (1998)

    Google Scholar 

  14. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations. To Methods of Their Solution and Some of Their Applications. Academic Press, London (1998)

    MATH  Google Scholar 

  17. Yaghoobi, S., Moghaddam, B.P., Ivaz, K.: An efficient cubic spline approximation for variable-order fractional differential equations with time delay. Nonlinear Dyn. 87(2), 815–826 (2017)

    Article  MathSciNet  Google Scholar 

  18. Moghaddam, B.P., Yaghoobi, S., Machado, J.T.: An extended predictor-corrector algorithm for variable-order fractional delay differential equations. J. Comput. Nonlinear Dyn. 11(6), 061001 (2016)

    Article  Google Scholar 

  19. Moghaddam, B.P., Mostaghim, Z.S.: A novel matrix approach to fractional finite difference for solving models based on nonlinear fractional delay differential equations. Ain Shams Eng. J. 5(2), 585–594 (2014)

    Article  Google Scholar 

  20. Moghaddam, B.P., Machado, J.A.T.: Extended algorithms for approximating variable order fractional derivatives with applications. J. Sci. Comput 71(3), 1351–1374 (2017)

  21. Moghaddam, B., Machado, J.: Sm-algorithms for approximating the variable-order fractional derivative of high order. Fundamenta Informaticae 151(1–4), 293–311 (2017)

    Article  MathSciNet  Google Scholar 

  22. Khater, A., Temsah, R., Hassan, M.: A Chebyshev spectral collocation method for solving Burgers-type equations. J. Comput. Appl. Math. 222(2), 333–350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maleknejad, K., Hashemizadeh, E., Basirat, B.: Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm–Hammerstein integral equations. Commun. Nonlinear Sci. Numer. Simul. 17(1), 52–61 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59(3), 1326–1336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khader, M., Hendy, A.: The approximate and exact solutions of the fractional-order delay differential equations using Legendre seudospectral method. Int. J. Pure Appl. Math. 74(3), 287–297 (2012)

    MATH  Google Scholar 

  26. Bhrawy, A., Alofi, A.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26(1), 25–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bhrawy, A., Zaky, M.: A fractional-order Jacobi tau method for a class of time-fractional PDEs with variable coefficients. Math. Methods Appl. Sci. 39, 1765–1779 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bhrawy, A., Zaky, M.: An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations. Appl. Numer. Math. 111, 197–218 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bhrawy, A.H., Zaky, M.A., Machado, J.A.T.: Numerical solution of the two-sided space–time fractional telegraph equation via Chebyshev tau approximation. J. Optim. Theory Appl. 1–21 (2016)

  30. Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer Science & Business Media, New York (2011)

    Book  MATH  Google Scholar 

  31. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation, Mineola (2001)

    MATH  Google Scholar 

  32. Trefethen, L.N.: Spectral Methods in MATLAB, vol. 10. Siam, Philadelphia (2000)

    Book  MATH  Google Scholar 

  33. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer Science & Business Media, New York (2011)

    MATH  Google Scholar 

  34. Bhrawy, A.H., Taha, T.M., Machado, J.A.T.: A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 81(3), 1023–1052 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hafez, R.M., Ezz-Eldien, S.S., Bhrawy, A.H., Ahmed, E.A., Baleanu, D.: A jacobi Gauss–Lobatto and Gauss–Radau collocation algorithm for solving fractional Fokker–Planck equations. Nonlinear Dyn. 82(3), 1431–1440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dabiri, A., Butcher, E.A.: Efficient modified Chebyshev differentiation matrices for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 50, 284–310 (2017). ISSN 1007-5704

    Article  MathSciNet  Google Scholar 

  37. Baltensperger, R., Berrut, J.-P.: The errors in calculating the pseudospectral differentiation matrices for Chebyshev-Gauss–Lobatto points. Comput. Math. Appl. 37(1), 41–48 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Baltensperger, R.: Improving the accuracy of the matrix differentiation method for arbitrary collocation points. Applied Numerical Mathematics 33(1), 143–149 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Don, W.S., Solomonoff, A.: Accuracy and speed in computing the Chebyshev collocation derivative. SIAM J. Sci. Comput. 16(6), 1253–1268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Trefethen, L.N., Trummer, M.R.: An instability phenomenon in spectral methods. SIAM J. Numer. Anal. 24(5), 1008–1023 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  41. Breuer, K.S., Everson, R.M.: On the errors incurred calculating derivatives using Chebyshev polynomials. J. Comput. Phys. 99(1), 56–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Costa, B., Don, W.S.: On the computation of high order pseudospectral derivatives. Appl. Numer. Math. 33(1), 151–159 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier Science Inc., New York (2006)

    Book  MATH  Google Scholar 

  44. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. CRC Press, Boca Raton (2002)

    Book  MATH  Google Scholar 

  45. Shiralashetti, S., Deshi, A.: An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations. Nonlinear Dyn. 83(1–2), 293–303 (2016)

    Article  MathSciNet  Google Scholar 

  46. Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM Rev. 9(1), 24–82 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  47. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2007)

    MATH  Google Scholar 

  48. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, vol. 2, pp. 963–968. IMACS, IEEE-SMC, Lille, France (1996)

  49. Saif, M., Ebrahimi, B., Vali, M.: A second order sliding mode strategy for fault detection and fault-tolerant-control of a mems optical switch. Mechatronics 22(6), 696–705 (2012)

    Article  Google Scholar 

  50. Dabiri, A., Nazari, M., Butcher, E.A.: Chaos analysis and control in fractional-order systems using fractional Chebyshev collocation method. In: ASME 2016 International Mechanical Engineering Congress and Exposition (IMECE), Phoenix, AZ, 11–17 Nov 2016

  51. Dabiri, A.: Guide to FCC: stability and solution of linear time variant fractional differential equations with spectral convergence using the FCC toolbox package in MATLAB. http://u.arizona.edu/~armandabiri/fcc.html (2017). Accessed 5 Jan 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Dabiri.

Appendix

Appendix

The proposed method described here is freely available in the FCC toolbox package programmed in MATLAB [51].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabiri, A., Butcher, E.A. Stable fractional Chebyshev differentiation matrix for the numerical solution of multi-order fractional differential equations. Nonlinear Dyn 90, 185–201 (2017). https://doi.org/10.1007/s11071-017-3654-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3654-3

Keywords

Navigation