Skip to main content
Log in

Fractional modified Duffing–Rayleigh system and its synchronization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Chaotic vibrations, stability and synchronization are important topics in nonlinear dynamics, and thus are studied in this paper for a new chaotic system with quadratic and cubic nonlinearly. The modified Duffing–Rayleigh system with piecewise quadratic function is presented firstly. Then, by taking the Melnikov function method, necessary conditions for chaotic motion of the modified Duffing–Rayleigh system are given. Fractional modified Duffing–Rayleigh oscillator is also discussed, and results of computer simulation demonstrate the chaotic dynamic behaviors of the fractional-order modified Duffing–Rayleigh system with order less than 2. Furthermore, generalized projective synchronization of two fractional modified Duffing–Rayleigh oscillators is explored by the active control technology. Adaptive synchronization and parameter identification of a fractional modified Duffing–Rayleigh oscillator with unknown parameters are also investigated. Numerical results validate the effectiveness and applicability of the proposed synchronization schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Agrawal, S.K., Das, S.: A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters. Nonlinear Dyn. 73, 907–919 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahmed, E., EI-Sayed, A.M., EI-Saka, H.: Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models. J. Math. Anal. Appl. 325(1), 542–553 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bhalekar, S., Daftardar-Gejji, V.: Synchronization of different fractional order chaotic systems using active control. Commun. Nonlinear Sci. Numer. Simul. 15, 3536–3546 (2010)

    Article  MATH  Google Scholar 

  4. Brzeziński, D.W.: Accuracy problems of numerical calculation of fractional order derivatives and integrals applying the Riemann–Liouville/Caputo formulas. Appl. Math. Nonlinear Sci. 1(1), 23–44 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Butzer, P.L., Westphal, U.: An Introduction to Fractional Calculus. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  6. Deng, W., Li, C.P.: Chaos synchronization of the fractional Lü system. Phys. A 353, 61–72 (2005)

    Article  Google Scholar 

  7. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Diethelm, K., Freed, A.D., Ford, N.J.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Friedrich, C.: Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheol. Acta 30(2), 151–158 (1991)

    Article  Google Scholar 

  10. Ge, Z.M., Zhang, A.R.: Chaos in a modified van der Pol system and in its fractional order systems. Chaos Solitons Fractals 32(5), 1791–1822 (2007)

    Article  Google Scholar 

  11. Guirao, J.L.G., Llibre, J., Vera, J.A.: Periodic solutions induced by an upright position of small oscillations of a sleeping symmetrical gyrostat. Nonlinear Dyn. 73(1), 417–425 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hifer, R.: Applications of Fractional Calculus in Physics. World Scientific, Hackensack (2001)

    Google Scholar 

  13. Jia, H.Y., Chen, Z.Q., Xue, W.: Analysis and circuit implementation for the fractional-order Lorenz system. Acta Phys. Sin. 62(14), 140503 (2013). (in Chinese)

    Google Scholar 

  14. Jiang, J.F., Cao, D.Q., Chen, H.T.: Boundary value problems for fractional differential equation with causal operators. Appl. Math. Nonlinear Sci. 1(1), 11–22 (2016)

    Article  MATH  Google Scholar 

  15. Li, C.G., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations. Phys. A 341, 55–61 (2004)

    Article  MathSciNet  Google Scholar 

  16. Li, C.P., Peng, G.J.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, C.P., Deng, W.H., Xu, D.: Chaos synchronization of the Chua system with a fractional order. Phys. A 360, 171–185 (2006)

    Article  MathSciNet  Google Scholar 

  18. Liu, J., Liu, S.T., Yuan, C.H.: Modified generalized projective synchronization of fractional-order chaotic Lü systems. Adv. Differ. Equ. 2013, 374 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu, X., Hong, L., Yang, L.: Fractional-order complex \(T\) system: bifurcations, chaos control, and synchronization. Nonlinear Dyn. 75(3), 589–602 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. López, M.A., Martínez, R.: A note on the generalized Rayleigh equation: limit cycles and stability. J. Math. Chem. 51(4), 1164–1169 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Martin, K.-R.: Lyapunov function. From MathWorld—A Wolfram Web Resource, created by E.W. Weisstein. http://mathworld.wolfram.com/LyapunovFunction.html

  22. Mahmouda, G.M., Mohameda, A.A., Alyb, S.A.: Strange attractors and chaos control in periodically forced complex Duffing’s oscillators. Phys. A 292, 193–206 (2001)

    Article  MathSciNet  Google Scholar 

  23. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, IMACS, IEEE-SMC 2, pp. 963–968. Lille (1996)

  24. Nonnenmacher, T.F., Glöckle, W.G.: A fractional model for mechanical stress relaxation. Philos. Mag. Lett. 64(2), 89–93 (1991)

    Article  Google Scholar 

  25. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In: Mathematics in Science and Engineering, Vol. 198. Academic Press, San Diego (1999)

  26. Razminia, A., Baleanu, D.: Complete synchronization of commensurate fractional order chaotic systems using sliding mode control. Mechatronics 23(7), 873–879 (2013)

    Article  Google Scholar 

  27. Robinson, C.: Dynamical Systems: Stability, Sympolic Dynamics, and Chaos. CRC, Boca Raton (1995)

    Google Scholar 

  28. Si, G., Sun, Z., Zhang, Y., Chen, W.: Projective synchronization of different fractional-order chaotic systems with non-identical orders. Nonlinear Anal.: Real World Appl. 13(4), 1761–1771 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Siewe, M.S., Tchawoua, C., Woafo, P.: Melnikov chaos in a periodically driven Rayleigh–Duffing oscillator. Mech. Res. Commun. 37(4), 363–368 (2010)

    Article  MATH  Google Scholar 

  30. Song, L., Yang, J.Y., Xu, S.Y.: Chaos synchronization for a class of nonlinear oscillators with fractional order. Nonlinear Anal. 72, 2326–2336 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tang, K.-S., Man, K.F., Zhong, G.-Q., Chen, G.R.: Generating chaos via \(x|x|\). IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(5), 636–641 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ueta, T., Kawakami, H.: Unstable saddle-node connecting orbits in the averaged Duffing–Rayleigh equation. In: Proceeding of IEEE International Symposium on Circuits and Systems, Vol. 3, pp. 288–291 (1996)

  33. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    Book  MATH  Google Scholar 

  34. Wu, X.J., Lu, Y.: Generalized projective synchronization of the fractional-order Chen hyperchaotic system. Nonlinear Dyn. 57, 25–35 (2009)

    Article  MATH  Google Scholar 

  35. Yan, J.P., Li, C.P.: Generalized projective synchronization of a unified chaotic system. Chaos Solitons Fractals 26, 1119–1124 (2005)

    Article  MATH  Google Scholar 

  36. Zeng, C.B., Yang, Q.G., Wang, J.W.: Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci. Nonlinear Dyn. 65, 457–466 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zhang, Y.L., Luo, M.K.: Fractional Rayleigh–Duffing-like system and its synchronization. Nonlinear Dyn. 70, 1173–1183 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (Nos. 11526109, 61379021), Natural Science Foundation of Fujian (Nos. 2015J05011, 2016J01671, JK2014028, JA14200), and the outstanding youth foundation of the Education Department of Fujiang Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Lan Zhang.

Appendix

Appendix

$$\begin{aligned}&\int _{-\infty }^{+\infty }\frac{1}{\cosh ^{2}\left( \sqrt{a}t\right) }\times \tanh ^{2}\left( \sqrt{a}t\right) \hbox {d}t\\&\quad =\frac{1}{\sqrt{a}}\mu \int _{-\infty }^{+\infty } \frac{1}{\cosh ^{2}\left( \sqrt{a}t\right) }\times \tanh ^{2}\left( \sqrt{a}t\right) d\left( \sqrt{a}t\right) \\&\quad =\frac{1}{\sqrt{a}}\mu \int _{-\infty }^{+\infty }\tanh ^{2}\left( \sqrt{a}t\right) d(\tanh \sqrt{a}t)\\&\quad = \frac{1}{3\sqrt{a}}\mu \times \tanh ^{3}\left( \sqrt{a}t\right) |_{-\infty }^{+\infty }\\&\quad =\frac{2}{3\sqrt{a}}\mu ,\\&\int _{-\infty }^{+\infty }\left| \frac{1}{\cosh \left( \sqrt{a}t\right) }\times \tanh \left( \sqrt{a}t\right) \right| ^{3}\hbox {d}t\\&\quad =2 \int _{0}^{+\infty } \frac{1}{\cosh ^{3}\left( \sqrt{a}t\right) }\times \tanh ^{3}\left( \sqrt{a}t\right) \hbox {d}t\\&\quad =2 \sqrt{\frac{1}{a}}\times \int _{0}^{+\infty }\hbox {sech}^{3}\left( \sqrt{a}t\right) \times \tanh ^{3}\left( \sqrt{a}t\right) d\left( \sqrt{a}t\right) \\&\quad =-2 \sqrt{\frac{1}{a}}\times \int _{0}^{+\infty }\hbox {sech}^{2}\left( \sqrt{a}t\right) \\&\qquad \times \tanh ^{2}\left( \sqrt{a}t\right) d\hbox {sech}\left( \sqrt{a}t\right) \\&\quad =-\frac{2}{3}\sqrt{\frac{1}{a}}\times \int _{0}^{+\infty }\tanh ^{2}\left( \sqrt{a}t\right) d\hbox {sech}^{3}\left( \sqrt{a}t\right) \\&\quad =-\frac{2}{3}\sqrt{\frac{1}{a}}\times (\tanh ^{2}\left( \sqrt{a}t\right) \hbox {sech}^{3}\left( \sqrt{a}t\right) |_{0}^{+\infty }\\&\qquad -\,\int _{0}^{+\infty }\hbox {sech}^{3}\left( \sqrt{a}t\right) d\tanh ^{2}\left( \sqrt{a}t\right) )\\&\quad =\frac{4}{3}\sqrt{\frac{1}{a}}\int _{0}^{+\infty }\hbox {sech}^{5}\left( \sqrt{a}t\right) \tanh \left( \sqrt{a}t\right) d \left( \sqrt{a}t\right) \\&\quad =-\frac{4}{3}\sqrt{\frac{1}{a}}\int _{0}^{+\infty }\hbox {sech}^{4}\left( \sqrt{a}t\right) d\hbox {sech }\left( \sqrt{a}t\right) \\&\quad =-\frac{4}{15}\sqrt{\frac{1}{a}}\hbox {sech }\left( \sqrt{a}t\right) |_{0}^{+\infty }\\&\quad =\frac{4}{15}\sqrt{\frac{1}{a}}.\\&\qquad -\,\sqrt{\frac{2 a^{2}}{b}}\int _{-\infty }^{+\infty }\frac{\tanh \left( \sqrt{a}t\right) }{\cosh \left( \sqrt{a}t\right) } \cos \omega ( t-t_{0})\hbox {d}t\\&\quad =-\sqrt{\frac{2 a^{2}}{b}}\sin (\omega t_{0})F\times \int _{-\infty }^{+\infty }\frac{\tanh \left( \sqrt{a}t\right) }{\cosh \left( \sqrt{a}t\right) }\sin (\omega t)\hbox {d}t\\&\quad =-\frac{\pi \omega \sqrt{2b}}{b}F\times \frac{\sin (\omega t_{0})}{\cosh \frac{\pi \omega }{2\sqrt{a}}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YL., Li, CQ. Fractional modified Duffing–Rayleigh system and its synchronization. Nonlinear Dyn 88, 3023–3041 (2017). https://doi.org/10.1007/s11071-017-3430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3430-4

Keywords

Navigation