Skip to main content
Log in

Immersion and invariance-based adaptive wing rock control with nonlinear terminal manifold

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper develops a new adaptive control system based on the immersion and invariance (I&I) theory for the wing rock motion control using state variable feedback. An I&I-based adaptive control system is designed for the regulation of the roll angle trajectory to a nonlinear terminal manifold. The trajectory evolving on this manifold converges to the origin in a finite time. The control system includes a control module and a parameter estimator which can be tuned independently for shaping the responses. A special feature of this adaptive law is that once the estimated parameters coincide with the actual values, then subsequently these parameter estimates remain frozen, and adaptation stops. Furthermore the trajectories of the closed-loop system eventually evolve on a manifold in an extended state space. Simulation results are presented which show that the adaptive controller suppresses the wing rock motion of delta wing at different angles of attack, despite uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(a_i,\hat{a}_i\) :

Wing rock model parameters

\(b_\mathrm{s}, b\) :

Span[m], control effectiveness gain

d :

Disturbance input (\(\hbox {rad/s}^2\))

\(I_{xx}\) :

Moment of inertia about roll axis (kg \(\hbox {m}^2\))

\(k_1, k_2, \mu \) :

Feedback gains

\(m_\mathrm{c}\) :

Net control moment, \(bI_{xx}u\) (N m)

s :

Function defining nonlinear terminal manifold

\(t_\mathrm{s}\) :

Reference time, \(b_\mathrm{s}/2V_f\) (s)

u :

Control input \((\hbox {rad/s}^2)\)

\(V_\mathrm{f}\) :

Airspeed (m/s)

V, \(V_1, V_2\) :

Lyapunov functions

\(w, w_\mathrm{n},w_\mathrm{s}\) :

Control signals

\(x_1, x_2\), x :

State variables, state vector

\(z_1, z_2\), z :

Parameter errors, parameter error vector

\(\alpha \) :

Angle of attack (deg)

\(\beta _1(\phi , \dot{\phi }, t), \beta _2(\phi , \dot{\phi },t, \hat{\Theta }_1)\) :

Nonlinear functions of parameter estimates

\(\gamma _i, \varGamma \) :

Gains in adaptation law

\(\lambda _\mathrm{max}(\varGamma ^{-1}), \lambda _\mathrm{min}(\varGamma ^{-1})\) :

Minimum (maximum) eigenvalue of \(\varGamma ^{-1}\)

\(\lambda , \nu \) :

Parameters of terminal manifold

\(\phi \), \(\dot{\phi }\), \(\phi _\mathrm{r}\) :

Roll angle, roll rate, reference roll angle

\(\varPsi _1, \varPsi \) :

Regressor vectors

\(\Theta _1\), \(\theta _2\), \(\Theta , \hat{\Theta }_1, \hat{\theta }_2, \hat{\Theta }\) :

Parameter vectors, partial parameter estimates

\( \varOmega \) :

Region in the state space

References

  1. Hsu, C.-H., Lan, C.E.: Theory of wing rock. J. Aircr. 22(10), 920–924 (1985)

    Article  Google Scholar 

  2. Nayfeh, A.H., Elzebda, J.M., Mook, D.T.: Analytical study of the subsonic wing-rock phenomenon for slender delta wings. J. Aircr. 26(9), 805–809 (1989)

    Article  Google Scholar 

  3. Elzebda, J.M., Nayfeh, A.H., Mook, D.T.: Development of an analytical model of wing rock for slender delta wings. J. Aircr. 26(8), 737–743 (1989)

    Article  Google Scholar 

  4. Katz, J.: Wing/vortex interactions and wing rock. Progr. Aerosp. Sci. 35, 727–750 (1999)

    Article  Google Scholar 

  5. Arena, A.S., Nelson, R.C.: Measurement of unsteady surface pressure on a slender wing undergoing a self-induced oscillation. Exp. Fluids 16(6), 414–416 (1994)

    Article  Google Scholar 

  6. Guglieri, G., Quagliotti, F.B.: Analytical and experimental analysis of wing rock. Nonlinear Dyn. 24(2), 129–146 (2001)

    Article  MATH  Google Scholar 

  7. Guglieri, G.: A Comprehensive analysis of wing rock dynamics for slender delta wing configurations. Nonlinear Dyn. 67(10), 1559–1575 (2012)

    Article  Google Scholar 

  8. Go, T.H., Ramnath, R.V.: Analytical theory of the two-degree-of-freedom wing rock in advanced aircraft. J. Guid. Control Dyn. 25(2), 324–333 (2002)

    Article  Google Scholar 

  9. Go, T.H., Ramnath, R.V.: Analytical theory of three-degree-of-freedom aircraft wing rock. J. Guid. Control Dyn. 27(4), 657–664 (2004)

    Article  Google Scholar 

  10. Luo, J., Lan, C.E.: Control of wing-rock motion of slender delta wings. J. Guid. Control Dyn. 16(2), 225–231 (1993)

    Article  Google Scholar 

  11. Shue, S.-P., Sawan, M.E., Rokhsaz, K.: Optimal feedback control of a nonlinear system: wing rock example. J. Guid. Control Dyn. 19(1), 166–171 (1996)

    Article  MATH  Google Scholar 

  12. Xin, M., Balakrishnan, S.N.: Control of the wing rock motion using a new suboptimal control method. Proc. IMECH Part G: J. Aerosp. Eng. 218(4), 257–266 (2004)

    Article  Google Scholar 

  13. Liu, Z.L., Su, C.-Y., Svoboda, J.: Variable phase control of wing rock. Aerosp. Sci. Technol. 10(1), 27–35 (2006)

    Article  MATH  Google Scholar 

  14. Zribi, M., Alshamadi, S., Al-Kendri, M.: Suppression of the wing-rock phenomenon using nonlinear controllers. Nonlinear Dyn. 71, 313–322 (2013)

    Article  MathSciNet  Google Scholar 

  15. Kuperman, A., Zhong, Q.-C.: UDE-based linear robust control for a class of nonlinear systems with application to wing rock motion stabilization. Nonlinear Dyn. 81, 789–799 (2015)

    Article  Google Scholar 

  16. Singh, S.N., Yim, W., Wells, W.R.: Direct adaptive and neural control of wing-rock motion of slender delta wings. J. Guid. Control Dyn. 18(1), 25–30 (1995)

    Article  Google Scholar 

  17. Sreenath, A.G., Wong, P.P., Choi, J.Y.: Suppression of wing rock using artificial neural networks and fuzzy logic controller. J. Aircr. 41(5), 1247–1252 (2004)

    Article  Google Scholar 

  18. Liu, Z.L.: Reinforcement adaptive fuzzy control of wing rock phenomena. IEE Proc. D Control Theory Appl. 152(6), 615–620 (2005)

  19. Cao, C., Hovakimyan, N., Lavretsky, E.: Application of \({\cal{L}}_1\) adaptive controller to wing-Rock. In: AIAA Guidance, Navigation and Control Conference and Exhibit. AIAA paper 2006-6426, Keystone, CO, August (2006)

  20. Capello, E., Guglieri, G., Sartori, D.: Performance evaluation of an \({\cal{L}}_1\) adaptive controller for wing-body rock suppression. J. Guid. Control Dyn. 35(6), 1702–1708 (2012)

    Article  Google Scholar 

  21. de Araujo, A.D., Singh, S.N.: Variable structure adaptive control of wing-rock motion of slender delta wings. J. Guid. Control Dyn. 21(2), 251–256 (1998)

    Article  Google Scholar 

  22. Monahemi, M.M., Krstic, M.: Control of wing rock motion using adaptive feedback linearization. J. Guid. Control Dyn. 19(4), 905–912 (1996)

    Article  MATH  Google Scholar 

  23. Jain, H., Kaul, V., Ananthkrishnan, N.: Parameter estimation of unstable limit cycling systems using adaptive feedback linearization: example of delta wing roll dynamics. J. Sound Vib. 297, 939–960 (2005)

    Article  MATH  Google Scholar 

  24. Astolfi, A., Karagiannis, D., Ortega, R.: Nonlinear and adaptive control with applications. Springer, London, 72–75, 270–271 (2008)

  25. Lee, K.W., Singh, S.N.: Noncertainty-equivalent adaptive wing-rock control via Chebyshev neural network. J. Guid. Control Dyn. 37(1), 123–133 (2014)

    Article  Google Scholar 

  26. Lee, K.W., Ghorawat, P., Singh, S.N.: Wing rock control by finite-form adaptation. J. Vib. Control. 22, 2687–2703 (2016)

    Article  MathSciNet  Google Scholar 

  27. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41, 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, J., Yang, J.: Smooth sliding mode control for missile interception with finite-time convergence. J. Guid. Control Dyn. 38(7), 1311–1318 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahjendra N. Singh.

Appendix

Appendix

1.1 1. Computation of \(\beta _1\) for \(\phi _\mathrm{r}\ne 0\)

For \(\phi _\mathrm{r} \ne 0\), (29) gives

$$\begin{aligned} \beta _1= \int _0^ {\dot{\phi }} \gamma _1 [\phi ,\xi , \xi |\xi |, \phi ^3, \phi ^2 \xi ]^\mathrm{T} \lambda \nu |\xi -\dot{\phi }_\mathrm{r}|^{\nu -1} \text {d} \xi \nonumber \\ \end{aligned}$$
(60)

Note \(\dot{\phi }\) has been replaced by variable \(\xi \) within the integrand. Integral of each term in (60) is obtained now.

$$\begin{aligned}&\int _0^{\dot{\phi }} \phi |\xi -\dot{\phi }_\mathrm{r}|^{\nu -1} \hbox {d}\xi \nonumber \\&\quad =\phi \left[ \frac{ |\dot{\phi }-\dot{\phi }_\mathrm{r}|^\nu }{\nu } \hbox {sgn}(\dot{\phi }-\dot{\phi }_\mathrm{r}) - \frac{ |\dot{\phi }_\mathrm{r}|^\nu }{\nu } \hbox {sgn}(-\dot{\phi }_\mathrm{r}) \right] \doteq \phi B_1\nonumber \\&\int _0^{\dot{\phi }} \xi |\xi -\dot{\phi }_\mathrm{r}|^{\nu -1} \hbox {d}\xi =\frac{ \dot{\phi }|\dot{\phi }-\dot{\phi }_\mathrm{r}|^\nu }{\nu } \hbox {sgn}(\dot{\phi }-\dot{\phi }_\mathrm{r}) \nonumber \\&\quad \quad -\,\int _0^{\dot{\phi }} \frac{ |\xi -\dot{\phi }_\mathrm{r}|^\nu }{\nu } \hbox {sgn}(\xi -\dot{\phi }_\mathrm{r}) \hbox {d}\xi \nonumber \\&\quad = \frac{ \dot{\phi }|\dot{\phi }-\dot{\phi }_\mathrm{r}|^\nu }{\nu } \hbox {sgn}(\dot{\phi }-\dot{\phi }_\mathrm{r})\nonumber \\&\quad \quad -\,\left[ \frac{ |\dot{\phi }-\dot{\phi }_\mathrm{r}|^{\nu +1}}{\nu (\nu +1)} - \frac{|\dot{\phi }_\mathrm{r}|^{\nu +1}}{\nu (\nu +1)} \right] \doteq B_2 \end{aligned}$$
(61)
$$\begin{aligned}&\int _0^{\dot{\phi }} \xi |\xi ||\xi -\dot{\phi }_\mathrm{r}|^{\nu -1}d \xi =\int _0^{\dot{\phi }}\xi ^2\hbox {sgn}(\xi ) |\xi -\dot{\phi }_\mathrm{r}| ^{\nu -1} \hbox {d}\xi \nonumber \\&\quad =\frac{ \dot{\phi }^2 \hbox {sgn}(\dot{\phi })|\dot{\phi }-\dot{\phi }_\mathrm{r}|^\nu }{\nu } \hbox {sgn}(\dot{\phi }-\dot{\phi }_\mathrm{r}) \nonumber \\&\quad \quad -\,\int _0^{\dot{\phi }} \frac{ 2\xi \hbox {sgn}(\xi ) |\xi -\dot{\phi }_\mathrm{r}|^\nu }{\nu } \hbox {sgn}(\xi -\dot{\phi }_\mathrm{r}) \hbox {d}\xi \nonumber \\&\quad =\frac{ \dot{\phi }^2 \hbox {sgn}(\dot{\phi })|\dot{\phi }-\dot{\phi }_\mathrm{r}|^\nu }{\nu } \hbox {sgn}(\dot{\phi }-\dot{\phi }_\mathrm{r}) \nonumber \\&\quad \quad -\,\frac{2 \hbox {sgn}(\dot{\phi })}{\nu } \left[ \frac{ \dot{\phi }|\dot{\phi }-\dot{\phi }_\mathrm{r}|^{\nu +1}}{\nu (\nu +1)} - \int _0^{\dot{\phi }} \frac{ |\xi -\dot{\phi }_\mathrm{r}|^{\nu +1}}{\nu (\nu +1)} \hbox {d}\xi \right] \nonumber \\&\quad \doteq B_3 \end{aligned}$$
(62)

Using equations for \(B_i\), one obtains \(\beta _1\) of the form

$$\begin{aligned} \beta _1=\gamma _1 \lambda \nu \left[ \begin{array}{cc} \phi B_1 \\ B_2 \\ B_3 \\ \phi ^3 B_1 \\ \phi ^2 B_2 \end{array} \right] \in R^5 \end{aligned}$$
(63)

The partial derivatives of \(\beta _1\) with respect to \(\hat{\Theta }\) and \(\phi \) required to compute the update law for \(\hat{\Theta }\) are

$$\begin{aligned}&\frac{\partial \beta _1}{\partial \hat{\Theta }}=0_{5 \times 6}\nonumber \\&\frac{ \partial \beta _1}{\partial \phi } =\gamma _1 \lambda \nu \left[ \begin{array}{cc} B_1 \\ 0 \\ 0 \\ 3\phi ^2 B_1 \\ 2\phi B_2 \end{array} \right] \in R^5 \end{aligned}$$
(64)

This completes the derivation of \(\beta _1\).

1.2 2. Computation of \(\beta _2\) for \(\phi _\mathrm{r}=0\)

Now the computation of \(\beta _2\) is considered. As noted earlier, closed-loop responses are satisfactory for the choice of \(\phi _\mathrm{r}=0\), in the sequel computation of \(\beta _2\) is given by setting \(\phi _\mathrm{r}=0\) for simplicity. Equation (29) gives

$$\begin{aligned} \beta _2= -\int _0^{\dot{\phi }} \gamma _2 w \lambda \nu |\dot{\phi }|^{\nu -1} \hbox {d}\dot{\phi }\end{aligned}$$
(65)

with

$$\begin{aligned} w= & {} -\varPsi _1^\mathrm{T}(\hat{\theta }_1 +\beta _1)-k_1 s-k_2 |s|^\mu \hbox {sgn}(s)\nonumber \\&-\,(\lambda \nu )^{-1}|\dot{\phi }|^{2-\nu } \hbox {sgn}(\dot{\phi })\nonumber \\ s= & {} \phi +\lambda |\dot{\phi }|^{\nu } \hbox {sgn}(\dot{\phi }) \end{aligned}$$
(66)

Now we can get \(\beta _2\) by collecting all.

$$\begin{aligned}&\beta _2=\gamma _2 \lambda \nu \biggl [ \int _0^{\dot{\phi }} (\psi _1^\mathrm{T} |\dot{\phi }|^{\nu -1}\hbox {d}\dot{\phi }) \hat{\theta }_1 \nonumber \\&\quad \quad +\, \int _0^{\dot{\phi }} \psi _1^\mathrm{T} \beta _1|\dot{\phi }|^{\nu -1}\hbox {d}\dot{\phi }+ k_1\int _0^{\dot{\phi }} s |\dot{\phi }|^{\nu -1}\hbox {d}\dot{\phi }\nonumber \\&\quad \quad +\, k_2 \int _0^{\dot{\phi }} |s|^{\mu } \hbox {sgn}(s) |\dot{\phi }|^{\nu -1}\hbox {d}\dot{\phi }+ \frac{1}{\lambda \nu } \int _0^{\dot{\phi }}{ |\dot{\phi }|\hbox {sgn}(\dot{\phi }) \hbox {d}\dot{\phi }}\biggr ]\nonumber \\&\quad \doteq A_1+A_2+A_3+A_4+A_5 \end{aligned}$$
(67)

Computing \(A_i\), \(i=1,\ldots , 5\), gives

$$\begin{aligned}&A_1=\frac{\gamma _2\beta _1^\mathrm{T}\hat{\theta }_1}{\gamma _1} \end{aligned}$$
(68)
$$\begin{aligned}&A_2=\gamma _1\gamma _2 (\lambda \nu )^2\left[ \frac{\phi ^2|\dot{\phi }|^{2\nu }}{2\nu ^2} +\frac{|\dot{\phi }|^{2\nu +2}}{(2\nu +2)(\nu +1)}\right. \nonumber \\&\left. \quad \quad + \frac{|\dot{\phi }|^{2\nu +4}}{(\nu +2)(2\nu +4)}+\frac{\phi ^6 |\dot{\phi }|^{2\nu }}{2\nu ^2}+\frac{\phi ^4 |\dot{\phi }|^{2\nu +2}}{(2\nu +2)(\nu +1)}\right] \nonumber \\\end{aligned}$$
(69)
$$\begin{aligned}&A_3=\gamma _2\lambda \nu k_1\left[ \frac{\phi |\dot{\phi }|^{\nu }\hbox {sgn}(\dot{\phi })}{\nu }+\frac{\lambda |\dot{\phi }|^{2\nu }}{2 \nu }\right] \end{aligned}$$
(70)
$$\begin{aligned}&A_4= \frac{\gamma _2 k_2}{\mu +1}[|\phi +\lambda |\dot{\phi }|^{\nu }\hbox {sgn}(\dot{\phi })|^{\mu +1}-|\phi |^{\mu +1}] \nonumber \\&\quad \quad = \frac{\gamma _2 \lambda \nu k_2}{\mu +1}[|s|^{\mu +1}-|\phi |^{\mu +1}] \end{aligned}$$
(71)
$$\begin{aligned}&A_5=\gamma _2\frac{|\dot{\phi }|^2}{2} \end{aligned}$$
(72)

Now \(\beta _2\) is obtained by adding the expressions for \(A_i\).

$$\begin{aligned} \beta _2=A_1+A_2+A_3+A_4+A_5 \end{aligned}$$
(73)

This completes computation of \(\beta _2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.W., Singh, S.N. Immersion and invariance-based adaptive wing rock control with nonlinear terminal manifold. Nonlinear Dyn 88, 955–972 (2017). https://doi.org/10.1007/s11071-016-3287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3287-y

Keywords

Navigation