Skip to main content
Log in

Weighted multifractal analysis of financial time series

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we propose the weighted multifractal analysis based on variance-weighted partition function (WMA), to evaluate the fractals of nonlinear time series containing amplitude information. The reliability of the proposed WMA is supported by simulations on generated and real-world financial volatility data. Numerical simulations with synthesized data show that WMA is comparative to the classic partition function-based standard multifractal analysis (SMA) and the multifractal detrending moving average analysis. More importantly, empirical analyses of Chinese stock indices illustrate that WMA outperforms SMA in distinguishing Hang Seng Index form SSE Composite Index and SZSE Component Index qualitatively and quantitatively, showing the power of WMA in discriminating series with distinctive amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kantelhardt, J.: Encyclopedia of complexity and systems science. In: Meyers, R.A. (ed.) Fractal and Multifractal Time Series, pp. 3754–3779. Springer, New York (2009)

    Google Scholar 

  2. Peng, C., Buldyrev, S., Havlin, S., Simons, M., Stanley, H., Goldberger, A.: Mosaic organization of DNA nucleotides. Phys. Rev. E 49, 1685–1689 (1994)

    Article  Google Scholar 

  3. Arianos, S., Carbone, A.: Detrending moving average algorithm: a closed-form approximation of the scaling law. Phys. A 382, 9–15 (2007)

    Article  Google Scholar 

  4. He, L.Y., Chen, S.P.: A new approach to quantify power-law crosscorrelation and its application to commodity markets. Phys. A 390, 3806–3814 (2011)

    Article  Google Scholar 

  5. Kristoufek, L.: Detrending moving-average cross-correlation coefficient: measuring cross-correlations between non-stationary series. Phys. A 406, 169–175 (2014)

    Article  Google Scholar 

  6. Podobnik, B., Stanley, H.: Detrended cross-correlation analysis: a new method for analyzing two non-stationary time series. Phys. Rev. Lett. 100, 38–71 (2008)

    Article  Google Scholar 

  7. Zebende, G.: DCCA cross-correlation coefficient: quantifying level of cross-correlation. Phys. A 390, 614–618 (2011)

    Article  Google Scholar 

  8. Kwapień, J., Oświȩcimka, P., Drożdż, S.: Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations. Phys. Rev. E 92(5), 052815 (2015)

    Article  Google Scholar 

  9. Barabási, A., Vicsek, T.: Multifractality of self-affine fractals. Phys. Rev. A 44, 2730–2733 (1991)

    Article  Google Scholar 

  10. Kristoufek, L.: Multifractal height cross-correlation analysis: a new method for analyzing long-range cross-correlations. EPL 95, 525–604 (2011)

    Article  Google Scholar 

  11. Kantelhardt, J., Zschiegner, S., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.: Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A 316, 87–114 (2002)

    Article  MATH  Google Scholar 

  12. Zhou, W.X.: Multifractal detrended cross-correlation analysis for two nonstationary signals. Phys. Rev. E 77, 066211 (2008)

    Article  Google Scholar 

  13. Gu, G.F., Zhou, W.X.: Detrending moving average algorithm for multifractals. Phys. Rev. E 82, 011136 (2010)

    Article  Google Scholar 

  14. Jiang, Z.Q., Zhou, W.X.: Multifractal detrending moving-average cross-correlation analysis. Phys. Rev. E 84, 016106 (2011)

    Article  Google Scholar 

  15. Oświȩcimka, P., Drożdż, S., Forczek, M., Jadach, S., Kwapień, J.: Detrended cross-correlation analysis consistently extended to multifractality. Phys. Rev. E 89, 023305 (2014)

    Article  Google Scholar 

  16. Xiong, H., Shang, P.: Detrended fluctuation analysis of multivariate time series. Commun. Nonlinear Sci. Numer. Simul. 42, 12–21 (2017)

    Article  MathSciNet  Google Scholar 

  17. Gierałtowski, J., Żebrowski, J., Baranowski, R.: Multiscale multifractal analysis of heart rate variability recordings with a large number of occurrences of arrhythmia. Phys. Rev. E 85, 021915 (2012)

    Article  Google Scholar 

  18. Xia, J., Shang, P., Wang, J.: Estimation of local scale exponents for heartbeat time series based on DFA. Nonlinear Dyn. 74, 1183–1190 (2013)

    Article  MathSciNet  Google Scholar 

  19. Zhao, X., Shang, P., Lin, A., Chen, G.: Multifractal fourier detrended cross-correlation analysis of traffic signals. Phys. A 390, 3670–3678 (2011)

    Article  Google Scholar 

  20. Wang, J., Shang, P., Cui, X.: Multiscale multifractal analysis of traffic signals to uncover richer structures. Phys. Rev. E 89, 032916 (2014)

    Article  Google Scholar 

  21. Xu, M., Shang, P., Xia, J.: Traffic signals analysis using qSDiff and qHDiff with surrogate data. Commun. Nonlinear Sci. Numer. Simul. 28, 98–108 (2015)

    Article  Google Scholar 

  22. Alvarez-Ramirez, J., Alvarez, J., Rodriguez, E.: Short-term predictability of crude oil markets: a detrended fluctuation analysis approach. Energy Econ. 30, 2645–2656 (2008)

    Article  Google Scholar 

  23. Lin, A., Shang, P., Zhou, H.: Cross-correlations and structures of stock markets based on multiscale MF-DXA and PCA. Nonlinear Dyn. 78, 485–494 (2014)

    Article  Google Scholar 

  24. Mali, P., Mukhopadhyay, A.: Long-range memory and multifractality in gold markets. Phys. Scr. 90, 035209 (2015)

    Article  Google Scholar 

  25. Zhao, X., Shang, P.: Principal component analysis for nonstationary time series based on detrended cross-correlation analysis. Nonlinear Dyn. 84, 1033–1044 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Podobnik, B., Jiang, Z.Q., Zhou, W.X., Stanley, H.: Statistical tests for power-law cross-correlated processes. Phys. Rev. E 84, 066118 (2011)

    Article  Google Scholar 

  27. Kristoufek, L.: Detrended fluctuation analysis as a regression framework: estimating dependence at different scales. Phys. Rev. E 91, 022802 (2015)

    Article  Google Scholar 

  28. Kristoufek, L.: Finite sample properties of power-law cross-correlations estimators. Phys. A 419, 513–525 (2015)

    Article  MathSciNet  Google Scholar 

  29. McCauley, J.: Introduction to multifractals in dynamical systems theory and fully developed fluid turbulence. Phys. Rep. 189, 225–266 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Barndorff-Nielsen, O., Schmiegel, J., Shephard, N.: Time Change and Universality in Turbulence and Finance. TN Thiele Centre, University of Aarhus, Aarhus (2006)

    Google Scholar 

  31. Sun, X., Chen, H., Wu, Z., Yuan, Y.: Multifractal analysis of Hang Seng index in Hong Kong stock market. Phys. A 291(1), 553–562 (2001)

    Article  MATH  Google Scholar 

  32. Ho, D.S., Lee, C.K., Wang, C.C., Chuang, M.: Scaling characteristics in the Taiwan stock market. Phys. A 332, 448–460 (2004)

    Article  Google Scholar 

  33. Wei, Y., Huang, D.: Multifractal analysis of SSEC in chinese stock market: a different empirical result from Heng Seng index. Phys. A 355, 497–508 (2005)

    Article  Google Scholar 

  34. Jiang, Z.Q., Zhou, W.X.: Multifractal analysis of Chinese stock volatilities based on the partition function approach. Phys. A 387, 4881–4888 (2008)

    Article  Google Scholar 

  35. Jiang, Z.Q., Zhou, W.X.: Multifractality in stock indexes: fact or fiction? Phys. A 387, 3605–3614 (2008)

    Article  Google Scholar 

  36. Wang, J., Shang, P., Ge, W.: Multifractal cross-correlation analysis based on statistical moments. Fractals 20, 271–279 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wei, Y., Chen, W., Lin, Y.: Measuring daily Value-at-Risk of SSEC index: a new approach based on multifractal analysis and extreme value theory. Phys. A 392, 2163–2174 (2013)

    Article  Google Scholar 

  38. Diego, J., Martínez-González, E., Sanz, J., Mollerach, S., Martínez, V.: Partition function based analysis of cosmic microwave background maps. Mon. Not. R. Astron. Soc. 306, 427–436 (1999)

    Article  Google Scholar 

  39. Shimizu, Y., Thurner, S., Ehrenberger, K.: Multifractal spectra as a measure of complexity in human posture. Fractals 10, 103–116 (2002)

    Article  Google Scholar 

  40. Shang, P., Kamae, S.: Fractal nature of time series in the sediment transport phenomenon. Chaos Solitons Fractals 26, 997–1007 (2005)

    Article  MATH  Google Scholar 

  41. Shang, P., Li, T.: Multifractal characteristics of palmprint and its extracted algorithm. Appl. Math. Model. 33, 4378–4387 (2009)

    Article  MATH  Google Scholar 

  42. Yang, A.C., Peng, C.K., Yien, H.W., Goldberger, A.: Information categorization approach to literary authorship disputes. Phys. A 329, 473–483 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pozzi, F., Di Matteo, T., Aste, T.: Exponential smoothing weighted correlations. Eur. Phys. J. B 85, 1–21 (2012)

    Article  Google Scholar 

  44. Fadlallah, B., Chen, B., Keil, A., Prncipe, J.: Weighted permutation entropy: a complexity measure for time series incorporating amplitude information. Phys. Rev. E 87, 022911 (2013)

    Article  Google Scholar 

  45. Eroglu, D., Peron, T., Marwan, N., Rodrigues, F., Costa, L., Sebek, M., Kiss, I., Kurths, J.: Entropy of weighted recurrence plots. Phys. Rev. E 90, 042919 (2014)

    Article  Google Scholar 

  46. Yin, Y., Shang, P.: Weighted multiscale permutation entropy of financial time series. Nonlinear Dyn. 78, 2921–2939 (2014)

    Article  MathSciNet  Google Scholar 

  47. Xiong, H., Shang, P.: Weighted multifractal cross-correlation analysis based on Shannon entropy. Commun. Nonlinear Sci. Numer. Simul. 30, 268–283 (2016)

    Article  MathSciNet  Google Scholar 

  48. Meneveau, C., Sreenivasan, K., Kailasnath, P., Fan, M.: Joint multifractal measures: theory and applications to turbulence. Phys. Rev. A 41, 894 (1990)

    Article  MathSciNet  Google Scholar 

  49. Halsey, T., Jensen, M., Kadanoff, L., Procaccia, I., Shraiman, B.: Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  50. Chhabra, A., Meneveau, C., Jensen, R., Sreenivasan, K.: Direct determination of the \(f(\alpha )\) singularity spectrum and its application to fully developed turbulence. Phys. Rev. A 40, 5284 (1989)

    Article  Google Scholar 

  51. Chhabra, A., Jensen, R.: Direct determination of the \(f(\alpha )\) singularity spectrum. Phys. Rev. Lett. 62, 1327 (1989)

    Article  MathSciNet  Google Scholar 

  52. Meneveau, C., Sreenivasan, K.: Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59, 1424 (1987)

    Article  Google Scholar 

  53. Cheng, Q.: Generalized binomial multiplicative cascade processes and asymmetrical multifractal distributions. Nonlinear Process. Geophys. 21, 477–487 (2014)

    Article  Google Scholar 

  54. Zhou, W.X.: Finite-size effect and the components of multifractality in financial volatility. Chaos Solitons Fractals 45, 147–155 (2012)

    Article  MATH  Google Scholar 

  55. Bouchaud, J.P., Potters, M., Meyer, M.: Apparent multifractality in financial time series. Eur. Phys. J. B 13, 595–599 (2000)

    Google Scholar 

  56. Saichev, A., Sornette, D.: Generic multifractality in exponentials of long memory processes. Phys. Rev. E 74, 011111 (2006)

    Article  MathSciNet  Google Scholar 

  57. Drożdż, S., Kwapień, J., Oświȩcimka, P., Rak, R.: Quantitative features of multifractal subtleties in time series. EPL 88, 60003 (2009)

    Article  Google Scholar 

  58. Zhou, W.X.: The components of empirical multifractality in financial returns. EPL 88, 28004 (2009)

    Article  Google Scholar 

  59. Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals. Springer, New York (1992)

    Book  MATH  Google Scholar 

  60. Ihlen, E.: Introduction to multifractal detrended fluctuation analysis in Matlab. Front. Physiol. 3 (2012). doi:10.3389/fphys.2012.00141

  61. Hosking, J.: Fractional differencing. Biometrika 68, 165–176 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  62. Podobnik, B., Horvatic, D., Ng, A., Stanley, H., Ivanov, P.: Modeling long-range cross-correlations in two-component ARFIMA and FIARCH processes. Phys. A 387, 3954–3959 (2008)

    Article  MathSciNet  Google Scholar 

  63. Yin, Y., Shang, P.: Modified DFA and DCCA approach for quantifying the multiscale correlation structure of financial markets. Phys. A 392, 6442–6457 (2013)

    Article  Google Scholar 

  64. Drożdż, S., Oświȩcimka, P.: Detecting and interpreting distortions in hierarchical organization of complex time series. Phys. Rev. E 91, 030902 (2015)

    Article  Google Scholar 

  65. Drożdż, S., Kwapień, J., Oświȩcimka, P.: The foreign exchange market: return distributions, multifractality, anomalous multifractality and the Epps effect. N. J. Phys. 12, 105003 (2010)

    Article  Google Scholar 

  66. Tél, T., Fülöp, Á., Vicsek, T.: Determination of fractal dimensions for geometrical multifractals. Phys. A 159, 155–166 (1989)

    Article  Google Scholar 

  67. Theiler, J.: Estimating fractal dimension. JOSA A 7, 1055–1073 (1990)

    Article  MathSciNet  Google Scholar 

  68. Badii, R., Politi, A.: Hausdorff dimension and uniformity factor of strange attractors. Phys. Rev. Lett. 52, 1661 (1984)

    Article  MathSciNet  Google Scholar 

  69. Badii, R., Politi, A.: Statistical description of chaotic attractors: the dimension function. J. Stat. Phys. 40, 725–750 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  70. Badii, R., Broggi, G.: Measurement of the dimension spectrum \(f(\alpha )\): fixed-mass approach. Phys. Lett. A 131, 339–343 (1988)

    Article  Google Scholar 

  71. Hirabayashi, T., Ito, K., Yoshii, T.: Multifractal analysis of earthquakes. Pure Appl. Geophys. 138, 591–610 (1992)

    Article  Google Scholar 

  72. De Bartolo, S.G., Primavera, L., Gaudio, R., DIppolito, A., Veltri, M.: Fixed-mass multifractal analysis of river networks and braided channels. Phys. Rev. E 74, 026101 (2006)

    Article  Google Scholar 

  73. Kamer, Y., Ouillon, G., Sornette, D.: Barycentric fixed-mass method for multifractal analysis. Phys. Rev. E 88, 022922 (2013)

    Article  Google Scholar 

  74. Kamer, Y., Ouillon, G., Sornette, D., Wssner, J.: Condensation of earthquake location distributions: optimal spatial information encoding and application to multifractal analysis of south Californian seismicity. Phys. Rev. E 92, 022808 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the editor and the anonymous reviewers for their valuable suggestions and comments that helped the improvement of this article. The financial support by the Fundamental Research Funds for the Central Universities (2016YJS152) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengjian Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, H., Shang, P. Weighted multifractal analysis of financial time series. Nonlinear Dyn 87, 2251–2266 (2017). https://doi.org/10.1007/s11071-016-3187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3187-1

Keywords

Navigation