Skip to main content
Log in

Estimation of local scale exponents for heartbeat time series based on DFA

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper mainly introduces a method combining detrended fluctuation analysis (DFA) with moving fitting window to analyze the heartbeat time series in different pathologic states. Compared to traditional approaches, the estimation of the local scale exponent method shows more details of scale properties and provides a reliable analysis. We also quantify the effects of outliers, subseries length and gender on scale spectrum α(s). Comparing the results of the healthy subjects, patients with congestive heart failure (CHF), and patients with atrial fibrillation (AF) indicate clearly that at small scales, the exponents show great volatility and they all have their own scale pattern. In addition, the length of the series should be relatively longer to avoid properties losing. For the effect of gender, contrary to healthy results, the scale exponents of CHF male subjects are continuously greater than female. The spectrum of DFA scale exponents provides a new way to measure the heartbeat series and distinguishes healthy and pathologic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ho, K.K.L., Moody, G.B., Peng, C.K., Mietus, J.E., Larson, M.G., Levy, D., Goldberger, A.L.: Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 96, 842–848 (1997)

    Article  Google Scholar 

  2. Ivanov, P.C., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Struzik, Z.R., Stanley, H.E.: Multifractality in human heartbeat dynamics. Nature 399, 461–465 (1999)

    Article  Google Scholar 

  3. Amaral, L.A.N., Ivanov, P.C., Aoyagi, N., Hidaka, I., Tomono, S., Goldberger, A.L., Stanley, H.E., Yamamoto, Y.: Behavioral-independent features of complex heartbeat dynamics. Phys. Rev. Lett. 86, 6026–6029 (2001)

    Article  Google Scholar 

  4. Rajendra, A.U., Paul, J.K., Kannathal, N., Lim, C.M., Suri, J.S.: Heart rate variability: a review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006)

    Article  Google Scholar 

  5. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101, E215–E220 (2000)

    Article  Google Scholar 

  6. Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA sequences. Phys. Rev. E 49, 1685–1689 (1994)

    Article  Google Scholar 

  7. Peng, C.K., Mietus, J.E., Hausdorff, J.M., Havlin, S., Stanley, H.E., Goldberger, A.L.: Long-range anti-correlations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 70, 1343–1346 (1993)

    Article  Google Scholar 

  8. Hu, K., Ivanov, P.C., Zhi, C., Carpena, P., Stanley, H.E.: Effects of trends on detrended fluctuation analysis. Phys. Rev. E 64, 011114 (2001)

    Article  Google Scholar 

  9. Wang, J., Shang, P.J., Ge, W.J.: Multifractal cross-correlation analysis based on statistical moments. Fractals 20, 271–279 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, A.J., Shang, P.J., Zhao, X.J.: The cross-correlations of stock markets based on DCCA and time-delay DCCA. Nonlinear Dyn. 67, 425–435 (2012)

    Article  MathSciNet  Google Scholar 

  11. Zhao, X.J., Shang, P.J., Lin, A.J., Chen, G.: Multifractal Fourier detrended cross-correlation analysis of traffic signals. Physica A 390, 3670–3678 (2011)

    Article  Google Scholar 

  12. Xu, N., Shang, P.J., Kamae, S.: Modeling traffic flow correlation using DFA and DCCA. Nonlinear Dyn. 61, 207–216 (2010)

    Article  MATH  Google Scholar 

  13. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995)

    Article  Google Scholar 

  14. Viswanathan, G.M., Peng, C.K., Stanley, H.E., Goldberger, A.L.: Deviations from uniform power law scaling in nonstationary time series. Phys. Rev. E 55, 845–849 (1997)

    Article  Google Scholar 

  15. Echeverria, J.C., Woolfson, M.S., Crowe, J.A., Hayes-Gill, B.R., Croaker, G.D., Vyas, H.: Interpretation of heart rate variability via detrended fluctuation analysis and alphabeta filter. Chaos 13, 467–475 (2003)

    Article  Google Scholar 

  16. Castiglioni, P., Parati, G., Civijian, A., Quintin, L., Rienzo, M.D.: Local scale exponents of blood pressure and heart rate variability by detrended fluctuation analysis: effects of posture, exercise, and aging. IEEE Trans. Biomed. Eng. 56, 675–684 (2009)

    Article  Google Scholar 

  17. Castiglioni, P., Parati, G., Lombardi, C., Quintin, L., Rienzo, M.D.: Assessing the fractal structure of heart rate by the temporal spectrum of scale exponents: a new approach for detrended fluctuation analysis of heart rate variability. Biomed. Tech. 56, 175–183 (2011)

    Article  Google Scholar 

  18. Castiglioni, P., Parati, G., Rienzo, M.D., Carabalona, R., Cividjian, A., Quintin, L.: Scale exponents of blood pressure and heart rate during autonomic blockade as assessed by detrended fluctuation analysis. J. Physiol. 589, 355–369 (2011)

    Article  Google Scholar 

  19. Gieraltowski, J., Zebrowski, J.J., Baranowski, R.: Multiscale multifractal analysis of heart rate variability recordings with a large number of occurrences of arrhythmia. Phys. Rev. E 85, 021915 (2012)

    Article  Google Scholar 

  20. MIT-BIH Normal Sinus Rhythm Database, BIDMC Congestive Heart Failure Database and Long-Term Atrial Fibrillation Database. Available at http://physionet.org/physiobank/database

Download references

Acknowledgements

The financial supports from the funds of the China National Science (61071142, 61371130), the Beijing National Science (4122059), and the National High Technology Research Development Program of China (863 Program) (2011AA110306) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengjian Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, J., Shang, P. & Wang, J. Estimation of local scale exponents for heartbeat time series based on DFA. Nonlinear Dyn 74, 1183–1190 (2013). https://doi.org/10.1007/s11071-013-1033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1033-2

Keywords

Navigation