Skip to main content
Log in

Development of a mathematical model and analytical solution of a coupled two-beam array with nonlinear tip forces for application to AFM

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Utilising arrays of cantilevers has been identified as a method of increasing AFM sensitivity and throughput beyond the limitations of current non-contact AFM. In order to develop the technology, we investigate the change in eigenstates of arrays due to interactions that occur between cantilever tip and sample using a model of a base-coupled array of cantilevers with individual mass and stiffness properties influenced by a quadratic nonlinear force to represent tip–sample interactions. An analytical expression is developed for a coupled two-beam array utilising Multiple Scale Lindstedt–Poincare perturbation theory to assess how a selected parameter space alters the array dynamics. Experiments are carried out using a macroscale set-up to validate the developed model. We show that the model captures the eigenstates of the system with good qualitative accuracy and that the perturbation expansion performs well in both the weakly (far from surface) and strongly (near the pull-in point) nonlinear regimes. The results demonstrate that utilising changes in eigenstates due to force interactions could have significant benefits to non-contact AFM with regard to measurement sensitivity and speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abramovitch, D.Y., Andersson, S.B., Pao, L.Y., Schitter, G.: A tutorial on the mechanisms, dynamics, and control of atomic force microscopes. In: American Control Conference (2007)

  2. Albrecht, T.R., Grutter, P., Horne, D., Rugar, D.: Frequency modulation detection using high-Q cantilevers microscope sensitivity for enhanced force. J. Appl. Phys. 69(2), 668–673 (1991)

    Article  Google Scholar 

  3. Ando, T.: High-speed atomic force microscopy coming of age. Nanotechnology 23(6), 1–27 (2012)

  4. Chakraborty, I., Balachandran, B.: Near-grazing dynamics of base excited cantilevers with nonlinear tip interactions. Nonlinear Dyn. 70(2), 1297–1310 (2012)

    Article  MathSciNet  Google Scholar 

  5. Dahleh, M., Bamieh, B., Napoli, M.: Optimal control of arrays of microcantilevers. IEEE Conf. Decis. Control 121, 2077–2082 (1999)

    Google Scholar 

  6. Dankowicz, H., Nordmark, A.B.: On the origin and bifurcations of stick-slip oscillations. Phys. D Nonlinear Phenom. 136, 280–302 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dick, A.J., Balachandran, B., Mote, Jr. C.D.: Intrinsic localized modes in microresonator arrays and their relationship to nonlinear vibration modes. Nonlinear Dyn. 54(1–2), 13–29 (2008)

  8. Gutschmidt, S., Gottlieb, O.: Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large DC-voltages. Nonlinear Dyn. 67(1), 1–36 (2012)

    Article  MATH  Google Scholar 

  9. Hagedorn, P., DasGupta, A.: Vibrations and Waves in Continuous Mechanical Systems. Wiley, Hoboken (2007)

    Book  MATH  Google Scholar 

  10. Kimura, M., Hikihara, T.: Coupled cantilever array with tunable on-site nonlinearity and observation of localized oscillations. Phys. Lett. A 373(14), 1257–1260 (2009)

    Article  Google Scholar 

  11. Lenczner, M., Smith, R.C.: A two-scale model for an array of AFM’s cantilever in the static case. Math. Comput. Model. 46(5–6), 776–805 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lifshitz, R., Cross, M.: Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays. Phys. Rev. B 67(13), 134302 (2003)

    Article  Google Scholar 

  13. Napoli, M., Zhang, W., Turner, K.L., Bamieh, B.: Characterization of electrostatically coupled microcantilevers. J. Microelectrom. Syst. 14(2), 295–304 (2005)

    Article  Google Scholar 

  14. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley-VCH, Weinheim (2004)

    MATH  Google Scholar 

  15. Pakdemirli, M., Karahan, M.M.F., Boyac, H.: A new perturbation algorithm with better convergence properties: Multiple scales lindstedt poincare method. Math. Comput. Appl. 14(1), 31–44 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Spletzer, M., Raman, A., Sumali, H., Sullivan, J.P.: Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays. Appl. Phys. Lett. 92(11), 824–833 (2008)

    Article  Google Scholar 

  17. Spletzer, M., Raman, A., Wu, A.Q., Xu, X., Reifenberger, R.: Ultrasensitive mass sensing using mode localization in coupled microcantilevers. Appl. Phys. Lett. 88(25), 10–13 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Jackson.

Appendices

Appendix 1

Expansion of the two-beam Eq. (14) prior to applying perturbation expansions.

$$\begin{aligned}&\ddot{\hat{\varPhi }}_n + W_{cn} \dot{\hat{\varPhi }}_n + W_{kn} (\hat{\varPhi }_n + \bar{\varPhi }_n) + (W_{F_{n1}} AC_1 + W_{F_{n2}} AC_2) \nonumber \\&\qquad \times \cos (\varOmega \tau ) - \epsilon \nu \bigg ( \dfrac{2}{d_{01} \hat{d}_{02}} \bigg ) \bigg [ (d_{01} \overline{W}_{21} + \hat{d}_{02} \overline{W}_{11}) (\hat{\varPhi }_1 + \bar{\varPhi }_1) \nonumber \\&\qquad + (d_{01} \overline{W}_{22} + \hat{d}_{02} \overline{W}_{12}) (\hat{\varPhi }_2 + \bar{\varPhi }_2) \bigg ] (\ddot{\hat{\varPhi }}_n + W_{kn} (\hat{\varPhi }_n + \bar{\varPhi }_n)) \nonumber \\&\qquad + \epsilon ^2 \nu ^2 \bigg [ \dfrac{1}{\hat{d}^2_{02}} (\overline{W}_{21} (\hat{\varPhi }_1 + \bar{\varPhi }_1) + \overline{W}_{22} (\hat{\varPhi }_2 + \bar{\varPhi }_2))^2 \nonumber \\&\qquad +\dfrac{1}{\hat{d}^2_{01}} \left( \overline{W}_{11} (\hat{\varPhi }_1 + \bar{\varPhi }_1) + \overline{W}_{12} (\hat{\varPhi }_2 + \bar{\varPhi }_2)\right) ^2 + 4 \dfrac{1}{d_{01} \hat{d}_{02}} \nonumber \\&\qquad \times (\overline{W}_{11} (\hat{\varPhi }_1 + \bar{\varPhi }_1) + \overline{W}_{12} (\hat{\varPhi }_2 + \bar{\varPhi }_2)) (\overline{W}_{21} (\hat{\varPhi }_1 + \bar{\varPhi }_1) \nonumber \\&\qquad + \overline{W}_{22} (\hat{\varPhi }_2 + \bar{\varPhi }_2)) \bigg ] (\ddot{\hat{\varPhi }}_n + W_{kn} (\hat{\varPhi }_n + \bar{\varPhi }_n)) \nonumber \\&\qquad + \dfrac{1}{\hat{d}^2_{01}} W_{NL_{n1}} \tau _m - 2 \dfrac{1}{\hat{d}^2_{01} \hat{d}_{02}} \epsilon \nu \overline{W}_{22} \hat{\varPhi }_2 W_{NL_{n1}} \tau _m\nonumber \\&\qquad - B_{2n-1} \hat{\varPhi }_n + \epsilon ^2 \nu ^2 \dfrac{1}{\hat{d}^2_{01} \hat{d}^2_{02}} (\overline{W}_{21} \hat{\varPhi }_1 + \overline{W}_{22} \hat{\varPhi }_2)^2 W_{NL_{n1}} \tau _m \nonumber \\&\qquad + \dfrac{1}{\hat{d}^2_{02}} W_{NL_{n2}} \tau _m - 2 \dfrac{1}{\hat{d}_{01} \hat{d}^2_{02}} \epsilon \nu \overline{W}_{11} \hat{\varPhi }_1 W_{NL_{n2}} \tau _m \nonumber \\&\qquad - B_{2n} \hat{\varPhi }_N + \epsilon ^2 \nu ^2 \dfrac{1}{\hat{d}^2_{01} \hat{d}^2_{02}} (\overline{W}_{11} \hat{\varPhi }_1 + \overline{W}_{12} \hat{\varPhi }_2)^2 W_{NL_{n2}} \tau _m\nonumber \\&\quad = 0 \end{aligned}$$
(43)

with the following definitions

$$\begin{aligned}&\hat{d}_{01}=d_{01}-\overline{W}_{11}\bar{\varPhi }_1- \overline{W}_{12}\bar{\varPhi }_2\\&\hat{d}_{02}=d_{02}-\overline{W}_{21}\bar{\varPhi }_1- \overline{W}_{22}\bar{\varPhi }_2\\&B_1=\dfrac{2}{\hat{d}^2_{01}\hat{d}_{02}}W_{NL_{11}}\tau _m \overline{W}_{21}\\&B_2=\dfrac{2}{\hat{d}_{01}\hat{d}^2_{02}}W_{NL_{22}}\tau _m \overline{W}_{12}\\&B_3=\dfrac{2}{\hat{d}_{01}\hat{d}^2_{02}}W_{NL_{12}}\tau _m \overline{W}_{12}\\&B_4=\dfrac{2}{\hat{d}^2_{01}\hat{d}_{02}}W_{NL_{21}}\tau _m \overline{W}_{21} \end{aligned}$$

Appendix 2

Eigenvalues and eigenvectors for the first-order perturbation solution (20).

$$\begin{aligned}&r_1 = \sqrt{\omega ^2_1/2 - \alpha /2 + \omega ^2_2/2} \end{aligned}$$
(44a)
$$\begin{aligned}&r_2 = \sqrt{\alpha /2 + \omega ^2_1/2 + \omega ^2_2/2} \end{aligned}$$
(44b)
$$\begin{aligned}&\mathbf {\mathbf {v}_1} = \begin{bmatrix} v_{11} \\ v_{21} \end{bmatrix} = \begin{bmatrix} 1 \\ (\alpha + \omega ^2_1 - \omega ^2_2)/(2 \overline{\omega }_1) \end{bmatrix} \end{aligned}$$
(44c)
$$\begin{aligned}&\mathbf {\mathbf {v}_2} = \begin{bmatrix} v_{12} \\ v_{22} \end{bmatrix} = \begin{bmatrix} -(\alpha + \omega ^2_1 - \omega ^2_2)/(2 \overline{\omega }_2) \\ 1 \end{bmatrix} \end{aligned}$$
(44d)
$$\begin{aligned}&\alpha = \sqrt{\omega ^4_1 - 2 \omega ^2_1 \omega ^2_2 + \omega ^4_2 + 4 \overline{\omega }_1 \overline{\omega }_2} \end{aligned}$$
(44e)
$$\begin{aligned}&A_1 = \dfrac{1}{2} a_1 e^{i b_1} \end{aligned}$$
(44f)
$$\begin{aligned}&A_2 = \dfrac{1}{2} a_2 e^{i b_2} \end{aligned}$$
(44g)

Appendix 3

Secular terms of the two-beam perturbation model (31) and (32).

$$\begin{aligned} T_1= & {} (\mu ^2 W_{c11} z_{11}+ i r_1 A_1)/(2 v_{11} r_1) \end{aligned}$$
(45)
$$\begin{aligned} V_1= & {} (\mu ^2 (W_{F_{11}} AC_1 + W_{F_{12}} AC_2) e^{i \sigma _1 \tau _1})/(2 v_{11} r_1) \end{aligned}$$
(46)
$$\begin{aligned} T_2= & {} (\mu ^2 W_{c22} z_{21}+ i r_1 A_1)/(2 v_{21} r_1) \end{aligned}$$
(47)
$$\begin{aligned} V_2= & {} (\mu ^2 (W_{F_{21}} AC_1 + W_{F_{22}} AC_2) e^{i \sigma _1 \tau _1})/(2 v_{21} r_1) \end{aligned}$$
(48)
$$\begin{aligned} T_3= & {} (\mu ^2 W_{c11} z_{12} + i r_2 A_2)/(2 v_{12} r_2) \end{aligned}$$
(49)
$$\begin{aligned} V_3= & {} (\mu ^2 (W_{F_{11}} AC_1 + W_{F_{12}} AC_2) e^{i \sigma _2 \tau _1})/(2 v_{12} r_2) \end{aligned}$$
(50)
$$\begin{aligned} T_4= & {} (\mu ^2 W_{c22} z_{22}+ i r_2 A_2)/(2 v_{22} r_2) \end{aligned}$$
(51)
$$\begin{aligned} V_4= & {} (\mu ^2 (W_{F_{21}} AC_1 + W_{F_{22}} AC_2) e^{i \sigma _2 \tau _1})/(2 v_{22} r_2) \end{aligned}$$
(52)

Appendix 4

The following values are used for the single-beam and two-beam experiments.

See Tables 1 and 2.

Table 1 Values used for the single-beam model
Table 2 Values used for the two-beam model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, S., Gutschmidt, S., Roeser, D. et al. Development of a mathematical model and analytical solution of a coupled two-beam array with nonlinear tip forces for application to AFM. Nonlinear Dyn 87, 775–787 (2017). https://doi.org/10.1007/s11071-016-3076-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3076-7

Keywords

Navigation